scholarly journals Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.)

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Peiting Li ◽  
Zhe Chai ◽  
Pingping Lin ◽  
Chaohua Huang ◽  
Guoqiang Huang ◽  
...  

Abstract Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. Results A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. Conclusions In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.

Author(s):  
Piting Li ◽  
Zhe Chai ◽  
Pingping Lin ◽  
Chaohua Huang ◽  
Guoqiang Huang ◽  
...  

Abstract Background: APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play important roles in plant growth, development, metabolism, as well as in biotic and abiotic stress responses. However, there are few studies concerning AP2/ERF genes in sugarcane, which is the most critical sugar and energy crop worldwide. Results: A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs, and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV) and 4 Soloist genes. These genes were unevenly distributed on 32 chromosomes. Analysis of the structural of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum have a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflects their similarity. Multiple cis-regulatory elements (CREs) are present in the SsAP2/ERF promoter, and many are related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to the adaptation of sugarcane crops to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different stages of development. In 10 sugarcane samples, 39 SsAP2/ERFs were not expressed at all, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under drought stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 hours of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in ABA and GA-associated drought stress response mechanisms. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes play an important role in drought and salt stress responses of S. spontaneum. Conclusions: In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.


2019 ◽  
Vol 18 (5) ◽  
pp. 290-301 ◽  
Author(s):  
Christa G Toenhake ◽  
Richárd Bártfai

Abstract Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.


2021 ◽  
Author(s):  
Haitao Xing ◽  
Yusong Jiang ◽  
Xiaoling Long ◽  
Xiaoli Wu ◽  
Yun Ren ◽  
...  

Abstract Background:AP2/ERF transcription factors perform indispensable functions in various biological processes, such as plant growth, development, biotic and abiotic stresses responses. The AP2/ERF transcription factor family has been identified in many plants, and several AP2/ERF transcription factors from Arabidopsis (Arabidopsis thaliana) have been functionally characterized. However, little research has been conducted on the AP2/ERF genes of ginger (Zingiber officinale), which is an important edible and medicinal horticultural plant. The recently published whole genome sequence of ginger allowed us to study the tissue and expression profiles of AP2/ERF genes in ginger on a genome-wide basis.Results:In this study, 163 AP2/ERF genes of ginger (ZoAP2/ERF) were identified and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. According to the number conserved domains and gene structure, the AP2/ERF genes were divided into three subfamilies by phylogenetic analysis, namely, AP2 (35 members), ERF (125 members) and RAV (3 members). A total of 10 motifs were detected in ginger AP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes.Conclusion:A comprehensive analysis of AP2/ERF gene expression patterns in different tissues and rhizome development stages by transcriptom sequence and quantitative real-time PCR (qRT-PCR) showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminarily identified. This systematic analysis establishes a foundation for further studies of the functional characteristics of ZoAP2/ERF genes and improvement of ginger.


2020 ◽  
Author(s):  
Xuke Lu ◽  
Na Shu ◽  
Delong Wang ◽  
Junjuan Wang ◽  
Xiugui Chen ◽  
...  

Abstract Background: The U-box gene encodes a ubiquitin ligase that contain U-box domain. The plant U-box gene (PUB) plays an important role in the response to stress, but few reports about PUBs in cotton were available. Therefore research on PUBs is of great importance and is a necessity when studying the mechanism of stress tolerance in cotton. Results: In this study, we identified 93, 96, 185 and 208 PUBs from four sequenced cotton species G. raimondii (D5), G. arboreum (A2), G. hirsutum (AD1) and G. barbadense (AD2), respectively. Prediction analysis of subcellular localization showed that the PUBs in cotton were widely distributed in cells, but primarily in the nucleus. The PUBs in cotton were divided into six subfamilies (A-F) on the basis of phylogenetic analysis, and the intron/exon structure was comparatively conserved within each subfamily. Location analysis showed that cotton PUBs were unevenly anchored on all chromosomes, varying from 1 to 14 per chromosome. Through multiple sequence alignment, 3 tandem duplications and 28 segmental duplications in cotton genome D5, 2 tandem duplications and 25 segmental duplications in A2, and 143 homologous gene pairs shared in A2 and D5 were found; however no tandem duplication region in A2 or D5 was found. Additionally, 105, 14 and 17 homologous gene pairs were found in the intra-subgenome of At and Dt, the At subgenome and the Dt subgenome of allotetraploid cotton, respectively. Functional analysis of GhPUB85A and GhPUB45D showed that these genes positively responded to abiotic stresses, but the expression patterns were different. In addition, although the expression levels of these two homologous genes were similar, their contributions were different when responding to stresses, specifically showing different responses to abiotic stresses and functional differences between the two subgenomes of G. hirsutum. Conclusion: This study reports the genome-wide identification, structure, evolution and expression analysis of PUBs in cotton, and the results showed that the PUBs were highly conserved throughout the evolutionary history of cotton. All PUB genes were involved in response to abiotic stresses (including those induced by salt, drought, hot and cold) to varying degrees.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2021 ◽  
Vol 12 ◽  
Author(s):  
Farhat Abbas ◽  
Yanguo Ke ◽  
Yiwei Zhou ◽  
Yunyi Yu ◽  
Muhammad Waseem ◽  
...  

The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiexuan Zheng ◽  
Huaxiang Su ◽  
Ruoyi Lin ◽  
Hui Zhang ◽  
Kuaifei Xia ◽  
...  

Abstract Late embryogenesis abundant (LEA) proteins belong to a large family that exists widely in plants and is mainly involved in desiccation processes during plant development or in the response to abiotic stresses. Here, we reported on an atypical LEA gene (IpLEA) related to salt tolerance from Ipomoea pes-caprae L. (Convolvulaceae). Sequence analysis revealed that IpLEA belongs to the LEA_2 (PF03168) group. IpLEA was shown to have a cytoplasmic localization pattern. Quantitative reverse transcription PCR analysis showed that IpLEA was widely expressed in different organs of the I. pes-caprae plants, and the expression levels increased following salt, osmotic, oxidative, freezing, and abscisic acid treatments. Analysis of the 1,495 bp promoter of IpLEA identified distinct cis-acting regulatory elements involved in abiotic stress. Induction of IpLEA improved Escherichia coli growth performance compared with the control under abiotic stresses. To further assess the function of IpLEA in plants, transgenic Arabidopsis plants overexpressing IpLEA were generated. The IpLEA-overexpressing Arabidopsis seedlings and adult plants showed higher tolerance to salt and drought stress than the wild-type. The transgenic plants also showed higher oxidative stress tolerance than the wild-type Arabidopsis. Furthermore, the expression patterns of a series of stress-responsive genes were affected. The results indicate that IpLEA is involved in the plant response to salt and drought, probably by mediating water homeostasis or by acting as a reactive oxygen species scavenger, thereby influencing physiological processes under various abiotic stresses in microorganisms and plants.


2018 ◽  
Vol 19 (9) ◽  
pp. 2580 ◽  
Author(s):  
Chang-Tao Wang ◽  
Jing-Na Ru ◽  
Yong-Wei Liu ◽  
Jun-Feng Yang ◽  
Meng Li ◽  
...  

Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunhua Chen ◽  
Xueqian Chen ◽  
Jing Han ◽  
Wenli Lu ◽  
Zhonghai Ren

Abstract Background Cucumber (Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. Results In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Conclusions Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.


Sign in / Sign up

Export Citation Format

Share Document