scholarly journals Circ-SMARCA5 suppresses progression of multiple myeloma by targeting miR-767-5p

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haiyan Liu ◽  
Yan Wu ◽  
Shunye Wang ◽  
Jie Jiang ◽  
Chenlu Zhang ◽  
...  

Abstract Background We aimed to investigate the correlation of Circ-SMARCA5 with disease severity and prognosis in multiple myeloma (MM), and its underlying mechanisms in regulating cell proliferation and apoptosis. Methods Bone marrow samples from 105 MM patients and 36 healthy controls were collected for Circ-SMARCA5 expression measurement. And the correlation of Circ-SMARCA5 expression with patients’ characteristics and survival was determined. In vitro, the effect of Circ-SMARCA5 on MM cell proliferation and apoptosis was evaluated by altering Circ-SMARCA5 expression through transfection. Rescue experiments and luciferase assay were further performed to explore the mechanism of Circ-SMARCA5 as well as its potential target miR-767-5p in regulating MM cell activity. Results Circ-AMARCA5 was downregulated in MM and presented a good value in distinguishing MM patients from controls and it was also negatively correlated with Beta-2-microglobulin (β2-MG) level and International Staging System (ISS) stage. Additionally, Circ-SMARCA5 high expression was associated with higher CR as well as better PFS and OS. As for in vitro experiments, Circ-SMARCA5 expression was lower in MM cell lines compared with normal cells, and Circ-SMARCA5 overexpression inhibited cell proliferation but promoted cell apoptosis in RPMI8226 cells. Rescue experiments disclosed that the effect of Circ-SMARCA5 on cell activity was attenuated by miR-767-5p, and luciferase reporter assay revealed direct binding between Circ-SMARCA5 and miR-767-5p. Conclusions Circ-SMARCA5 is downregulated and correlated with lower β2-MG level and ISS stage as well as better prognosis in MM patients, and it inhibits proliferation but promotes apoptosis of MM cells via directly sponging miR-767-5p.

2019 ◽  
Vol 9 (7) ◽  
pp. 982-987
Author(s):  
Xiaoying Wang ◽  
Yanke Hao

Vascular smooth muscle cell (VSMC) abnormal proliferation is related to hypertension. P27 can arrest cell cycle and its downregulation is associated with hypertension. miR-155 plays a regulatory role in VSMC proliferation, while its relationship with hypertension is still unclear. Bioinformatics analysis reveals a relationship between p27 mRNA and miR-155. The present study explores miR-155's role in p27 expression, VSMC proliferation and apoptosis, as well as in the pathogenesis of hypertension. Dual luciferase assay verified the relationship between miR-155 and p27. miR155, p27, α-SMA, and Ki-67 expressions in the thoracic aorta media of rat hypertension model were detected. VSMCs were cultured in vitro and grouped into, anti-miR-NC, anti-miR-155, pIRES2-blank, pIRES2-p27, and anti-miR-155 + pIRES2-p27 groups followed by analysis of cell cycle by flow cytometry and cell proliferation by EdU staining. Hypertension rats were randomly divided into antagomir-155 and antagomir-control. Caudal artery systolic and diastolic pressures were measured. miR-155 suppressed p27 expression. miR-155 and Ki-67 expressions were significantly enhanced, while p27 and α-SMA levels were reduced in the tunica media from hypertension rats compared with control. Downregulation of miR-155 and/or upregulation of p27 obviously declined cell proliferation and arrested cell cycle in G1 phase. Antagomir-155 injection significantly decreased systolic and diastolic pressures, elevated p27 and α-SMA expressions in media, and reduced the thickness of tunica media. miR-155 enhances VSMC proliferation via regulating p27. miR-155 enhancement was related to hypertension. miR-155 plays a therapeutic effect in hypertension.


2021 ◽  
Vol 11 (5) ◽  
pp. 1010-1016
Author(s):  
Weifeng Zha ◽  
Bo Guo ◽  
Shuyue Chen ◽  
Junwei Lu ◽  
Yunyun Shan

Objective: The study was aimed to explore the roles of miR-126-5p in psoriasis and the underlying molecular mechanisms. Methods: In vitro cell model of psoriasis was established by IL-22 induction. CASP1, the target gene of miR-126-5p, was predicted by TargetScan and verified through the dual luciferase reporter gene system. qRT-PCR was used to measure the mRNA expression of miR-126-5p and CASP1 in IL-22 stimulated HaCaT cells. The protein expression of CASP1, cleaved-caspase3 and caspase3 were measured by Western blot analysis. MTT assay and flow cytometry analysis were performed to detect the cell proliferation and apoptosis. A Caspase3 Activity Assay kit was used to detect the activity of Caspase3. Results: miR-126-5p was high expressed in IL-22 stimulated HaCaT cells compared with normal HaCaT cells. We predicted and verified that CASP1 was a direct target of miR-126-5p, and the mRNA and protein expression of CASP1 were reduced in IL-22 stimulated HaCaT cells compared with the normal HaCaT cells. miR-126-5p inhibitor and CASP1-siRNA significantly decreased the expression of miR-126-5p and CASP1 in HaCaT cells respectively. miR-126-5p inhibitor up-regulated the expression of CASP1 in HaCaT cells, and the effect was reversed by the transfection with CASP1-siRNA. In comparison with the control group, miR-126-5p inhibitor decreased the cell proliferation, induced apoptosis, and improved the activity of Caspase3, enhanced cleaved-caspase3/caspase3 ratio in IL-22 stimulated HaCaT cells, and all the effects were reversed by down-regulating CASP1. Conclusion: We demonstrated that miR-126-5p inhibitor played a protective role in psoriasis by targeting CASP1, evidenced by inhibiting IL-22-induced HaCaT cell proliferation and inducing apoptosis.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 796-806 ◽  
Author(s):  
Zhen Rang ◽  
Zong-yang Wang ◽  
Qiu-yu Pang ◽  
You-wei Wang ◽  
Ge Yang ◽  
...  

Background/Aims: Keloids are fibrous overgrowths induced by cutaneous injury. MicroRNAs (miRNAs) have recently emerged as post-transcriptional gene repressors and participants in a diverse array of pathophysiological processes leading to skin disease. The purpose of the current study was to explore the precise functions of miR-181a in human keloid development and the underlying mechanisms. Methods: A miRNA microarray analysis was performed to compare expression profiles between keloid and normal skin tissues. Quantitative real-time PCR was conducted to estimate miR-181a expression. Cell proliferation was determined using the cell counting kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assays, and cell cycle and apoptosis were detected with flow cytometry. Direct targets of miR-181a were identified using the luciferase reporter assay. Results: miR-181a was significantly upregulated in human keloid tissues and fibroblasts, compared with their control counterparts. Overexpression of miR-181a enhanced keloid fibroblast DNA synthesis and proliferation and inhibited apoptosis, whereas miR-181a suppression triggered the opposite effects. Moreover, miR-181a suppressed the expression of PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) through direct interactions with its 3′UTR region and subsequently enhanced AKT activation. Overexpression of PHLPP2 without its 3′UTR attenuated the effects of miR-181a on cell proliferation and apoptosis in keloid fibroblast cells. Furthermore, miR-181a mimics increased normal skin fibroblast proliferation. Conclusions: Our results highlight a novel pathway mediated by miR-181a, which may be effectively used as a therapeutic target for treatment of keloids.


2021 ◽  
Vol 20 ◽  
pp. 153303382199783
Author(s):  
XiangWen Yuan ◽  
Zhaoyan Sun ◽  
Congxian Cui

Objective: Retinoblastoma (RB) is a frequent eye cancer in children. Long non-coding RNA (LncRNA) HOXA transcript at the distal tip (HOTTIP) is aberrantly expressed in cancer tissues. This study explores the underlying mechanism of lncRNA HOTTIP in RB. Methods: HOTTIP expression in normal retinal cells and RB cell lines was detected using qRT-PCR. The proliferation of RB cells was measured using CCK-8 and EdU assays, and apoptosis was detected using flow cytometry and Western blotting after the transfection of si-HOTTIP into Y79 cells and pc-HOTTIP into HXO-RB-44 cells. The target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1 were predicted by bioinformatics website and verified using dual-luciferase reporter gene assay. The binding of HOTTIP and miR-101-3p was verified using RNA pull-down assay. STC1 mRNA and protein in RB cells were measured using qRT-PCR and Western blotting. Moreover, si-HOTTIP and in-miR-101-3p/in-NC, and si-HOTTIP and pc-STC1/pcDNA were co-transfected into Y79 cells respectively to evaluate cell proliferation and apoptosis. Xenograft study was conducted, and Ki67-positive expression was detected using immunohistochemical staining. Results: HOTTIP expression was promoted in RB tissues and cells. Downregulation of HOTTIP inhibited proliferation and promoted apoptosis of Y79 cells, while upregulation of HOTTIP promoted proliferation and inhibited apoptosis of HXO-RB-44 cells. There were target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1. Inhibition of miR-101-3p or overexpression of STC1 reversed the effect of si-HOTTIP on the proliferation and apoptosis of RB cells. Xenograft study showed that knockdown of HOTTIP suppressed the growth of RB in vitro. Conclusion: It could be concluded that HOTTIP sponged miR-101-3p to upregulate STC1 expression, thereby promoting RB cell proliferation and inhibiting apoptosis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Liping Wang ◽  
Chenchen Ren ◽  
Yajuan Xu ◽  
Li Yang ◽  
Yannan Chen ◽  
...  

Abstract Background Long noncoding RNA (lncRNA) LINC00922 has been reported to promote tumorigenesis of lung and breast cancer. However, the functions and mechanisms of LINC00922 in ovarian cancer (OC) remain unclarified. The current study aims to clarify the detailed functions and underlying mechanisms of LINC00922 in the progression of OC. Methods LINC00922 expression in OC tissues and cells was identified by a comprehensive strategy of data miming, computational biology and quantitative real-time polymerase chain reaction (RT-qPCR) experiment. In vitro CCK-8, wound healing, transwell invasion, western blotting and in vivo tumorigenesis assays LINC00922 were conducted to evaluate the functions of LINC00992. Subsequently, bioinformatics technology and dual luciferase reporter assay were performed to confirm the between miR-361-3p and LINC00922 or CLDN1. Finally, rescue experiments were performed to confirm whether LINC00922 effect functions of OC cells through regulation of miR-361-3p. Results LINC00922 was significantly upregulated in OC tissues and cell lines, which is significantly positively corelated with the poor prognosis of patients with OC. LINC00922 knockdown inhibited proliferation and tumorigenesis of OC cells in vitro and vivo. In addition, LINC00922 knockdown suppressed migration, invasion, and EMT of OC cells in vitro. Mechanically, LINC00922 could competitively bind with miR-361-3p to relieve the repressive effect of miR-361-3p on its target gene CLDN1 in OC cells. In addition, silencing miR-361-3p promoted OC cell proliferation, migration, invasion, EMT and Wnt/β-catenin signaling, while LINC00922 knockdown inhibited Wnt/β-catenin signaling by upregulating miR-361-3p. Rescue experiments revealed that LINC00922 knockdown inhibited OC cell proliferation, migration, invasion and EMT by regulating miR-361-3p. Conclusion This study suggested that LINC00922 could competitively bind with miR-361-3p to promote the CLDN1 expression and activate Wnt/β-catenin signaling in OC progression, which providing a promising therapeutically target for OC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ru-nan Zhang ◽  
Dong-mei Wu ◽  
Li-ping Wu ◽  
Guo-wei Gao

Abstract Background Emerging studies have shown that long noncoding RNAs (lncRNAs) predominantly function in the carcinogenesis of multiple developing human tumors. The current study aimed to investigate the underlying mechanisms of LINC00337 in lung adenocarcinoma. Methods We analyzed TCGA and GTEx datasets and chose LINC00337 as the research object. Cell proliferation, cell apoptosis, cell cycle, migration, and invasion were detected in the gain and loss experiments of LINC00337 both in vitro and in vivo. Moreover, RNA pull-down, luciferase reporter assays, western blotting analysis, and rescue experiments were performed to investigate the underlying molecular mechanisms of LINC00337 function. Results LINC00337 expression was remarkably upregulated in lung adenocarcinoma. In addition, LINC00337 knockdown was shown to repress cell migration, invasion, and proliferation, as well as the cell cycle, and gear up apoptosis in lung adenocarcinoma in vitro and in vivo. With respect to the mechanism, LINC00337 knockdown boosted miR-1285-3p expression and then restrained YTHDF1 expression post-transcriptionally. Crucially, both miR-1285-3p decrement and YTHDF1 overexpression successfully reversed the influence on cell proliferation, migration, invasion, and apoptosis caused by LINC00337 shRNA. Conclusions These results suggest that LINC00337 acts as an oncogenic lncRNA, targeting miR-1285-3p and regulating YTHDF1 expression, to promote the progression of lung adenocarcinoma.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lianguo Xue ◽  
Tao Jia ◽  
Yuanxin Zhu ◽  
Lidong Zhao ◽  
Jianping Mao

Abstract Background Multiple myeloma (MM) is one of the most frequently diagnosed hematological malignancy. Dysregulation of circular RNAs (circRNAs) has important impacts on MM process. Herein, this work aimed to investigate the role and mechanism of circ_0058058 in MM progression. Methods Levels of genes and proteins were detected by real-time reverse transcription PCR (RT-qPCR) and Western blot. CCK-8 assay, colony formation assay, EdU assay, flow cytometry, tube formation assay, transwell assay and Western blot were utilized to detect the proliferation, apoptosis, angiogenesis and metastasis of MM cells. The target relationship between miR-338-3p and circ_0058058 or ATG14 (autophagy related 14) was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In vivo experiments were performed using Xenograft assay. Results Circ_0058058 was up-regulated in MM bone marrow aspirates and cells, knockdown of circ_0058058 reduced MM cell proliferation, angiogenesis and metastasis, but induced apoptosis in vitro. In a MM xenograft mouse model, circ_0058058 silencing reduced MM tumor growth and cell proliferation. Mechanistically, circ_0058058 acted as a sponge for miR-338-3p to up-regulate ATG14 expression, which was validated to be a target of miR-338-3p. Rescue assay showed that miR-338-3p inhibition reversed the antitumor effects of circ_0058058 knockdown on MM cell. Moreover, forced expression of miR-338-3p suppressed MM cell malignant phenotype, which was abolished by ATG14 up-regulation. Conclusion Circ_0058058 functions as a sponge for miR-338-3p to elevate ATG14 expression to promote MM cell proliferation, metastasis and angiogenesis, affording a potential therapeutic target for MM prevention.


2020 ◽  
Author(s):  
Xiao-Zhong Liao ◽  
Ying Gao ◽  
Hong-Wei Zhao ◽  
Mi Zhou ◽  
Dan-Lei Chen ◽  
...  

Abstract Background: Cisplatin (DDP) is the firs-line chemotherapeutic agent for the treatment of NSCLC. However, DDP resistance limits their usage to maximize the antineoplastic effect. The aims of this study were to investigate whether cordycepin (Cor) could reverse multidrug resistance (MDR) in NSCLC and to explore the underlying mechanisms.Methods: Cell proliferation and apoptosis were analyzed in NSCLC cell lines in vitro and in vivo, parental and DDP-resistant A549 cells, treated with DDP alone or combination with Cor. Proteins of different signaling pathways were investigated between DDP-sensistive and -insensitive A549 cell lines by GO terms and KEGG analysis, and perturbations of the MAPK and PI3K-AKT signaling pathways were evaluated by western blot. Results: Our data showed that Cor enhanced DDP inhibition of cell proliferation and promotion of apoptosis markedly compared to DDP alone group in both A549 and A549DDP. The synergic actions were associated with activation of AMPK and inhibition of AKT, mTOR and downstream P709S6K, S6 phosphorylation in the AKT pathway.Conclusion: Cor/DDP combination has synergistic effect on inhibiting proliferation and promoting apoptosis of NSCLC cells in the presence or absence of DDP resistance.


2017 ◽  
Vol 42 (1) ◽  
pp. 242-253 ◽  
Author(s):  
Peng Zhang ◽  
Jifeng Li ◽  
Yuze Song ◽  
Xiao Wang 

Background/Aims: Recently, microRNAs (miRNA) have been identified as novel regulators in Chondrosarcoma (CHS). This study was aimed to identify the roles of miR-129-5p-5p in regulation of SOX4 and Wnt/β-catenin signaling pathway, as well as cell proliferation and apoptosis in chondrosarcomas. Materials and Methods: Tissue samples were obtained from chondrosarcoma patients. Immunohistochemistry, real-time quantitative RT-PCR (RT-qPCR) and western blot analysis were performed to detect the expressions of miR-129-5p and SOX4. Luciferase assay was conducted to confirm that miR-129-5p directly targeted SOX4 mRNA. Manipulations of miR-129-5p and SOX4 expression were achieved through cell transfection. Cell proliferation, migration and apoptosis were evaluated by CCK-8 assay, colony forming assay, wound healing assay and flow cytometry in vitro. For in vivo experiment, the tumor xenograft model was established to evaluate the effects of miR-129-5p and SOX4 on chondrosarcomas. Results: The expression of miR-129-5p was significantly down-regulated in chondrosarcoma tissues as well as cells in comparison with normal ones, while SOX4 was over-activated. Further studies suggested that miR-129-5p suppressed cell proliferation, migration and promoted apoptosis by inhibiting SOX4 and Wnt/β-catenin pathway. Conclusion: MiR-129-5p inhibits the Wnt/β-catenin signaling pathway by targeting SOX4 and further suppresses cell proliferation, migration and promotes apoptosis in chondrosarcomas.


Author(s):  
Ping Jiang ◽  
Mao Huang ◽  
Weiwei Qi ◽  
Fenghua Wang ◽  
Tianyou Yang ◽  
...  

Abstract Background Neuroblastoma (NB) is one of the deadliest paediatric solid tumours due to its rapid proliferative characteristics. Amplified copies of MYCN are considered the most important marker for the prediction of tumour relapse and progression in NB, but they were only detected in 20–30% of NB patients, indicating there might be other oncogenes in the development of NB. The far upstream element binding protein 1 (FUBP1) was first identified as a transcriptional regulator of the proto-oncogene MYC. However, the expression and role of FUBP1 in NB have not been documented. Methods FUBP1 expression was analysed from GEO database and verified by immunohistochemistry (IHC) and western blotting (WB) in NB tissues and cell lines. Cell proliferation and apoptosis were detected by Cell Counting Kit-8, Colony formation assay, EDU, TUNEL staining and flow cytometric analysis. Several glycolytic metabolites production was confirmed by ELISA and oxygen consuming rate (OCR). Luciferase assay, WB, chromatin immunoprecipitation (CHIP) were used to explore the mechanisms of the effect of FUBP1 on NB. Results FUBP1 mRNA levels were increased along with the increase in International Neuroblastoma Staging System (INSS) stages. High expression of FUBP1 with low N-Myc expression accounted for 44.6% of NB patient samples (n = 65). In addition, FUBP1 protein levels were remarkably increased with NB malignancy in the NB tissue microarray (NB: n = 65; ganglioneuroblastoma: n = 31; ganglioneuroma: n = 27). Furthermore, FUBP1 expression was negatively correlated with patient survival rate but positively correlated with ki67 content. In vitro experiments showed that FUBP1 promotes NB cell proliferation and inhibits cell apoptosis via enhancing glycolysis and ATP production. Mechanistically, FUBP1 inhibited the degradation of HIF1α via downregulation of Von Hippel-Lindau (VHL), the E3 ligase for HIF1α, resulting in upregulation of lactate dehydrogenase isoform B (LDHB) expression to enhance glycolysis. Overexpressed or silenced N-Myc could not regulate FUBP1 or LDHB levels. Conclusions Taken together, our findings demonstrate for the first time that elevated FUBP1 promotes NB glycolysis and growth by targeting HIF1α rather than N-Myc, suggesting that FUBP1 is a novel and powerful oncogene in the development of NB independent of N-Myc and may have potential in the diagnosis and treatment of NB.


Sign in / Sign up

Export Citation Format

Share Document