scholarly journals Alternative scheduling of pulsatile, high dose sunitinib efficiently suppresses tumor growth

Author(s):  
Maria Rovithi ◽  
Richard R. de Haas ◽  
Richard J. Honeywell ◽  
Dennis Poel ◽  
Godefridus J. Peters ◽  
...  
2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


2011 ◽  
Vol 211 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Yan Lin ◽  
Suyi Li ◽  
Peng Cao ◽  
Lu Cheng ◽  
Ming Quan ◽  
...  

Cancer-related malnutrition is a mortal threat to gastric carcinoma patients. However, conventional nutrition treatment is not effective for recovery. Recombinant human GH (rhGH) is widely accepted clinically to treat severe malnutrition caused by non-malignant diseases, but not approved to treat malignant diseases due to the safety concern. To explore the safety of rhGH on gastric cancer, we assessed the effect of rhGH on two tumor-bearing mice modelsin vivoestablished by human gastric adenoma cell lines of SGC-7901 and MKN-45. VEGF expression in tumor tissues was detected using immunohistochemistry. The expression of GH receptor (Ghr),Jak-2,Stat3,Vegf, Hif-1α, Fgf, andMmp-2was measured by RT-PCR and protein expression of STAT3, phosphorylated STAT3, VEGF, HIF-1α, and MMP-2 was measured by western blotting. The immunocytochemistry results showed that the GHR expression of SGC-7901 was strongly positive (GHR+++), while GHR expression of MKN-45 was regarded as negative (GHR−). After 14 days of rhGH treatment in SGC-7901 (GHR+++) tumor-bearing mice, we found that the tumor growth was significantly increased, and the expressions of downstream factors and VEGF were increased. However, in MKN-45 (GHR−) tumor-bearing mice, tumor growth was not significantly increased by rhGH, but tumor-free body weight was increased especially in high-dose rhGH-treated group (P<0.05). These findings suggest that the level of GHR expression is a key target that influences the effectiveness of rhGH on promoting the growth of gastric cancer and angiogenesis. rhGH may promote the activation of tumor angiogenesis factors through the Jak-2–STAT3 pathway.


2011 ◽  
Vol 11 (10) ◽  
pp. S3-S4
Author(s):  
Camilo Molina ◽  
Rachel Sarabia-Estrada ◽  
Ziya Gokaslan ◽  
Jean-Paul Wolinsky ◽  
Ali Bydon ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 855-855
Author(s):  
Leonid Dubrovsky ◽  
Elliott Brea ◽  
Dmitry Pankov ◽  
Nicholas Veomett ◽  
Tao Dao ◽  
...  

Abstract Acute and chronic leukemias, including CD34+ CML stem cells, overexpress the Wilms tumor gene 1 (WT1) protein, making WT1 an attractive therapeutic target. ESKM is a fully human IgG1 antibody that targets a 9 amino acid sequence (RMF) of the protein WT1 in the context of HLA-A0201, allowing it to target an undruggable, widely expressed, intracellular oncogene product. BV173 is an HLA-A0201+, human Ph+ ALL cell line that expresses WT1, and tagged by our lab with luciferase. We engineered a tyrosine kinase inhibitor (TKI) resistant BV173-R cell line by transducing BV173 with the resistant T315I Bcr-Abl plasmid. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated in vitro by chromium release assay, utilizing human PBMC effectors. Tumor growth in vivo was assessed in NOD/SCID gamma (NSG) mice with bioluminescence imaging (BLI). RT-PCR was used to evaluate minimal residual disease in mice with negative BLI signal at the end of therapy. Imatinib, dasatinib, and ponatinib were used at up to maximally tolerated doses, given IP once daily. ESKM was administered at 100 µg twice weekly IP. ESKM mediated ADCC against both BV173 and BV173-R cell lines in vitro. In a BV173 engrafted human leukemia xenograft model, ESKM was more potent than imatinib, with median tumor growth reduction of 78% vs 52%. Combination of imatinib and ESKM therapy resulted in a 94% reduction in leukemic growth. High dose dasatinib (40 mg/kg daily) was more potent than ESKM, but discontinuation of therapy due to dasatinib toxicity resulted in relapse. Combination with ESKM therapy with dasatinib resulted in cure in 75% of mice, confirmed by bone marrow RT-PCR three weeks after termination of therapy. For mice cytoreduced with dasatinib followed by consolidation therapy with ESKM, delayed relapse was observed, but no cures. ESKM was highly superior to imatinib and dasatinib against the T315I BV173-R leukemia in vivo. Cures were not achieved with combination therapy of ESKM and either first or second generation TKIs against resistant T315I leukemia. Ponatinib at 10 mg/kg had higher efficacy than ESKM alone against BV173-R, but mice treated with combination of ESKM and ponatinib had superior tumor reduction. CONCLUSION: ESKM is an effective therapeutic antibody for sensitive and T315I Ph+ ALL. Resistant T315I Ph+ leukemic growth is inhibited more effectively by ESKM therapy compared to imatinib and dasatinib, and combination therapy with ESKM is superior to ponatinib. Supported by the Leukemia and Lymphoma Society, NIH R01CA55349, P01 23766 and T32CA62948-18. Disclosures: Yan: Eureka Therapeutics: Employment. Liu:Eureka Therapeutics: Employment, Equity Ownership.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 9075-9075
Author(s):  
N. A. Doudican ◽  
R. Pennell ◽  
T. Tu ◽  
L. Liebes ◽  
A. Pavlick ◽  
...  

9075 Background: Defects in apoptosis are thought to contribute to melanoma chemoresistance, making the anti-apoptotic protein Bcl-2 an attractive therapeutic target. We identified mebendazole (MBZ), a microtubule binding agent, as an inducer of melanoma cytotoxicity via a Bcl-2 dependent mechanism in vitro (Mol Cancer Res, Aug 2008). In the present study, we assessed the effect of MBZ on human melanoma tumor growth and progression in a mouse xenograft model and compared the ability of MBZ to inhibit growth of cultured melanoma cells to that of oblimersen (OBL), an antisense drug targeting Bcl-2. Methods: Growth of human M-14 melanoma xenografts in mice administered MBZ orally at doses from 0.1 to 2 mg were compared to tumor growth in mice receiving 100mg/kg intraperitoneal temozolomide (TMZ) or vehicle alone. Tumor diameter, volume, histopathology, and immunohistochemical staining of caspase 3 and Ki67 were assessed. Bcl-2 phosphorylation was determined by immunoblotting. MBZ and OBL-induced melanoma growth inhibition was analyzed by MTT assay. Results: Anti-melanoma effects of MBZ were dose- dependent up to 1 mg which displayed a 72% reduction in tumor volume compared to vehicle treated mice. This reduction in volume was accompanied by a 46% decrease in proliferating cells and an 81% increase in apoptotic cells. Moreover, 1 mg MBZ inhibited tumor growth as effectively as high dose TMZ, the current melanoma standard of care. Orally administered MBZ treatment resulted in Bcl-2 phosphorylation in vivo, further confirming its mechanism of action. MBZ inhibited growth of melanoma cells in culture more effectively than OBL with GI50 values of 0.32 uM and 7.45 uM, respectively. Conclusions: MBZ safely and effectively inhibits melanoma growth and progression in a xenograft model. A phase II clinical trial investigating MBZ's utility as adjuvant therapy in patients with stage IV, resected melanoma is planned. No significant financial relationships to disclose.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 709-709
Author(s):  
Shushan Rajesh Rana ◽  
Cristina Espinosa ◽  
Rebecca Ruhl ◽  
Latroy Robinson ◽  
Charles R. Thomas ◽  
...  

709 Background: Radiation dose escalation causes significant changes within the tumor microenvironment (TME) to enhance tumor cell death including altered microRNA (miR) levels. Among endothelial miRs, we identified miR-15a exhibits dose dependent differential regulation. miR-15a targets a key determinant of endothelial cell (EC) radiosensitivity, acid sphingomyelinase (SMPD1), an enzyme that drives rapid EC apoptosis via enhanced ceramide production. In colorectal cancer (CRC) (n = 182 patients), high miR-15a is associated with worse 5-year progression free and overall survival. miR-15a also affects immune function by promoting a pro-inflammatory TME milieu. We hypothesized miR-15a inhibition will increase tumor cell death through preservation of EC SMPD1, enhancing endothelial apoptosis and inflammatory cytokine upregulation. Methods: Using TaqMan Human miR panels, miRs were profiled in human umbilical vein ECs (HUVECs) after single 2 vs 20 Gy treatment. miR-target prediction programs identified miRs targeting SMPD1. In vitro gain and loss of function studies were performed with miR transfections in HUVECs and CT26 CRC cells. CXCL10 expression was measured by qRT-PCR. Caspase 1 activation was measured by a luminescence based assay. A CT26 syngeneic CRC flank murine model was used for in vivo miR-15a inhibitor assessment administered via tail vein injection unencapsulated or encapsulated in vascular-targeted 7C1 nanoparticles. Results: Among miRs targeting SMPD1, miR-15a exhibited the greatest differential change in HUVECs 6h post-IR between low and high dose radiation. Lower dose was associated with higher miR-15a and vice versa. Further, miR-15a levels inversely correlated with SMPD1. Exogenous miR-15a significantly decreased SMPD1 mRNA and protein. miR-15a inhibition decreased proliferation in both HUVECs and CT26 cells and increased apoptosis when combined with radiation. miR-15a inhibition increased endothelial CXCL10 expression and caspase-1 activation. Both systemic and vascular-targeted miR-15a inhibitor significantly diminished tumor growth in vivo. Conclusions: Our data suggests inhibition of vascular miR-15a is sufficient to decrease tumor growth likely due to rescue of endothelial SMPD1.


2020 ◽  
Vol 8 (2) ◽  
pp. e000537
Author(s):  
Hampartsoum B Barsoumian ◽  
Rishab Ramapriyan ◽  
Ahmed I Younes ◽  
Mauricio S Caetano ◽  
Hari Menon ◽  
...  

BackgroundDespite some successes with checkpoint inhibitors for treating cancer, most patients remain refractory to treatment, possibly due to the inhibitory nature of the tumor stroma that impedes the function and entry of effector cells. We devised a new technique of combining immunotherapy with radiotherapy (XRT), more specifically low-dose XRT, to overcome the stroma and maximize systemic outcomes.MethodsWe bilaterally established 344SQ lung adenocarcinoma tumors in 129Sv/Ev mice. Primary and secondary tumors were irradiated with either high-dose or low-dose of XRT with systemic anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte associated protein 4 administration. Survival and tumor growth were monitored for the various groups, and secondary tumors were phenotyped by flow cytometry for immune populations. Tumor growth factor-beta (TGF-β) cytokine levels were assessed locally after low-dose XRT, and specific immune-cell depletion experiments were conducted to identify the major contributors to the observed systemic antitumor effect.ResultsThrough our preclinical and clinical studies, we observed that when tumor burden was high, there was a necessity of combining high-dose XRT to ‘prime’ T cells at the primary tumor site, with low-dose XRT directed to secondary (metastatic) tumors to ‘modulate the stroma’. Low-dose XRT improved the antitumor outcomes of checkpoint inhibitors by favoring M1 macrophage polarization, enhancing natural killer (NK) cell infiltration, and reducing TGF-β levels. Depletion of CD4+ T cells and NK cells abrogated the observed antitumor effect.ConclusionOur data extend the benefits of low-dose XRT to reprogram the tumor environment and improve the infiltration and function of effector immune cells into secondary tumors.


2016 ◽  
Vol 100 ◽  
pp. S132
Author(s):  
Elizabeth Campbell ◽  
Margreet Vissers ◽  
Christina Wohlrab ◽  
Kevin Hicks ◽  
Matthew Strother ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah C. Brüningk ◽  
Jeffrey Peacock ◽  
Christopher J. Whelan ◽  
Renee Brady-Nicholls ◽  
Hsiang-Hsuan M. Yu ◽  
...  

AbstractRecurrent high grade glioma patients face a poor prognosis for which no curative treatment option currently exists. In contrast to prescribing high dose hypofractionated stereotactic radiotherapy (HFSRT, $$\ge 6$$ ≥ 6 Gy $$\times$$ × 5 in daily fractions) with debulking intent, we suggest a personalized treatment strategy to improve tumor control by delivering high dose intermittent radiation treatment (iRT, $$\ge 6$$ ≥ 6 Gy $$\times$$ × 1 every 6 weeks). We performed a simulation analysis to compare HFSRT, iRT and iRT plus boost ($$\ge 6$$ ≥ 6 Gy $$\times$$ × 3 in daily fractions at time of progression) based on a mathematical model of tumor growth, radiation response and patient-specific evolution of resistance to additional treatments (pembrolizumab and bevacizumab). Model parameters were fitted from tumor growth curves of 16 patients enrolled in the phase 1 NCT02313272 trial that combined HFSRT with bevacizumab and pembrolizumab. Then, iRT +/− boost treatments were simulated and compared to HFSRT based on time to tumor regrowth. The modeling results demonstrated that iRT + boost(− boost) treatment was equal or superior to HFSRT in 15(11) out of 16 cases and that patients that remained responsive to pembrolizumab and bevacizumab would benefit most from iRT. Time to progression could be prolonged through the application of additional, intermittently delivered fractions. iRT hence provides a promising treatment option for recurrent high grade glioma patients for prospective clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document