scholarly journals Recombinant antigens used as diagnostic tools for lymphatic filariasis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
André Filipe Pastor ◽  
Maressa Rhuama Silva ◽  
Wagner José Tenório dos Santos ◽  
Tamisa Rego ◽  
Eduardo Brandão ◽  
...  

AbstractLymphatic filariasis (LF) is a parasitic disease caused by the worms Wuchereria bancrofti, Brugia malayi, or Brugia timori. It is a tropical and subtropical illness that affects approximately 67 million people worldwide and that still requires better diagnostic tools to prevent its spread and enhance the effectiveness of control procedures. Traditional parasitological tests and diagnostic methods based on whole protein extracts from different worms are known for problems related to sample time collection, sensitivity, and specificity. More recently, new diagnostic tools based on immunological methods using recombinant antigens have been developed. The current review describes the several recombinant antigens used as tools for lymphatic filariasis diagnosis in antigen and antibody capture assays, highlighting their advantages and limitations as well as the main commercial tests developed based on them. The literature chronology is from 1991 to 2021. First, it describes the historical background related to the identification of relevant antigens and the generation of the recombinant polypeptides used for the LF diagnosis, also detailing features specific to each antigen. The subsequent section then discusses the use of those proteins to develop antigen and antibody capture tests to detect LF. So far, studies focusing on antibody capture assays are based on 13 different antigens with at least six commercially available tests, with five proteins further used for the development of antigen capture tests. Five antigens explored in this paper belong to the SXP/RAL-2 family (BmSXP, Bm14, WbSXP-1, Wb14, WbL), and the others are BmShp-1, Bm33, BmR1, BmVAH, WbVAH, BmALT-1, BmALT-2, and Wb123. It is expected that advances in research with these antigens will allow further development of tests combining both sensitivity and specificity with low costs, assisting the Global Program to Eliminate Lymphatic Filariasis (GPELF).

Parasitology ◽  
2014 ◽  
Vol 141 (14) ◽  
pp. 1912-1917 ◽  
Author(s):  
MARIA P. REBOLLO ◽  
MOSES JOHN BOCKARIE

SUMMARYLymphatic filariasis (LF), which is highly endemic in 73 countries worldwide, is targeted for elimination by 2020. The strategy for achieving this goal is based on 4 sequential programmatic steps: mapping, Mass drug administration (MDA) implementation, post-MDA surveillance and verification of LF elimination. All 4 stages of the implementation process are dependent on the availability of user friendly and highly sensitive rapid diagnostic tools. By the end of 2012, 59 countries had completed mapping for LF and Eritrea was the only country yet to start the process. Rolling out new diagnostic tools to facilitate the mapping process will enable an accelerated shrinking of the LF map to zero endemic countries by 2020. When the Global Programme to Eliminate Lymphatic Filariasis was launched in 2000, diagnostic tools for LF were limited to clinical examination, detection of microfilaria (MF) by microscopy in night blood samples and detection of antibodies to native-antigen preparations. There has been a significant improvement in the traditional LF diagnostic methods in recent years and some new tools are now available. This paper provides an update on the human diagnostic tests available for LF and their current applications as tools in mapping and transmission monitoring. The values of entomological indicators and parasite detection and speciation methods applied to vector populations are also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mustafa Ghaderzadeh ◽  
Mehrad Aria ◽  
Farkhondeh Asadi

Purpose. Due to the excessive use of raw materials in diagnostic tools and equipment during the COVID-19 pandemic, there is a dire need for cheaper and more effective methods in the healthcare system. With the development of artificial intelligence (AI) methods in medical sciences as low-cost and safer diagnostic methods, researchers have turned their attention to the use of imaging tools with AI that have fewer complications for patients and reduce the consumption of healthcare resources. Despite its limitations, X-ray is suggested as the first-line diagnostic modality for detecting and screening COVID-19 cases. Method. This systematic review assessed the current state of AI applications and the performance of algorithms in X-ray image analysis. The search strategy yielded 322 results from four databases and google scholar, 60 of which met the inclusion criteria. The performance statistics included the area under the receiver operating characteristics (AUC) curve, accuracy, sensitivity, and specificity. Result. The average sensitivity and specificity of CXR equipped with AI algorithms for COVID-19 diagnosis were >96% (83%-100%) and 92% (80%-100%), respectively. For common X-ray methods in COVID-19 detection, these values were 0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. AI has substantially improved the diagnostic performance of X-rays in COVID-19. Conclusion. X-rays equipped with AI can serve as a tool to screen the cases requiring CT scans. The use of this tool does not waste time or impose extra costs, has minimal complications, and can thus decrease or remove unnecessary CT slices and other healthcare resources.


2019 ◽  
Vol 26 (11) ◽  
pp. 1946-1959 ◽  
Author(s):  
Le Minh Tu Phan ◽  
Lemma Teshome Tufa ◽  
Hwa-Jung Kim ◽  
Jaebeom Lee ◽  
Tae Jung Park

Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.


Author(s):  
Andrea Springer ◽  
Antje Glass ◽  
Julia Probst ◽  
Christina Strube

AbstractAround the world, human health and animal health are closely linked in terms of the One Health concept by ticks acting as vectors for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs. veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for collaboration in a One Health framework.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gustavo Henrique Pereira Boog ◽  
João Vitor Ziroldo Lopes ◽  
João Vitor Mahler ◽  
Marina Solti ◽  
Lucas Tokio Kawahara ◽  
...  

Abstract Purpose Increasing incidences of syphilis highlight the preoccupation with the occurrence of neurosyphilis. This study aimed to understand the current diagnostic tools and their performance to detect neurosyphilis, including new technologies and the variety of existing methods. Methods We searched databases to select articles that reported neurosyphilis diagnostic methods and assessed their accuracy, presenting sensitivity and specificity values. Information was synthesized in tables. The risk of bias was examined using the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy recommendations. Results Fourteen studies were included. The main finding was a remarkable diversity of tests, which had varied purposes, techniques, and evaluation methodologies. There was no uniform criterion or gold standard to define neurosyphilis. The current basis for its diagnosis is clinical suspicion and cerebrospinal fluid analysis. There are new promising tests such as PCR tests and chemokine measurement assays. Conclusions The diagnosis of neurosyphilis is still a challenge, despite the variety of existing and developing tests. We believe that the multiplicity of reference standards adopted as criteria for diagnosis reveals the imprecision of the current definitions of neurosyphilis. An important next step for the scientific community is to create a universally accepted diagnostic definition for this disease.


2020 ◽  
Vol 13 (Supplement_1) ◽  
pp. S33-S38
Author(s):  
Gilberto Fontes ◽  
Eliana Maria Mauricio da Rocha ◽  
Ronaldo Guilherme Carvalho Scholte ◽  
Rubén Santiago Nicholls

Abstract In South and Central America, lymphatic filariasis (LF) is caused by Wuchereria bancrofti, which is transmitted by Culex quinquefasciatus, the only vector species in this region. Of the seven countries considered endemic for LF in the Americas in the last decade, Costa Rica, Suriname and Trinidad and Tobago were removed from the World Health Organization list in 2011. The remaining countries, Brazil, Dominican Republic, Guyana and Haiti, have achieved important progress in recent years. Brazil was the first country in the Americas to stop mass drug administration (MDA) and to establish post-MDA surveillance. Dominican Republic stopped MDA in all LF-endemic foci: La Ciénaga and Southwest passed the third Transmission Assessment Survey (TAS) and the Eastern focus passed TAS-1 in 2018. Haiti passed the TAS and interrupted transmission in >80% of endemic communes, achieving effective drug coverage. Guyana implemented effective coverage in MDAs in 2017 and 2018 and in 2019 scaled up the treatment for 100% of the geographical region, introducing ivermectin in the MDA in order to achieve LF elimination by the year 2026. The Americas region is on its way to eliminating LF transmission. However, efforts should be made to improve morbidity management to prevent disability of the already affected populations.


Author(s):  
Allassane F Ouattara ◽  
Catherine M Bjerum ◽  
Méité Aboulaye ◽  
Olivier Kouadio ◽  
Vanga K Marius ◽  
...  

Abstract Background Ivermectin (IVM) plus albendazole (ALB), or IA, is widely used in mass drug administration (MDA) programs that aim to eliminate lymphatic filariasis (LF) in Africa. However, IVM can cause severe adverse events in persons with heavy Loa loa infections that are common in Central Africa. ALB is safe in loiasis, but more information is needed on its efficacy for LF. This study compared the efficacy and safety of three years of semiannual treatment with ALB to annual IA in persons with bancroftian filariasis. Methods Adults with Wuchereria bancrofti microfilaremia (Mf) were randomized to receive either three annual doses of IA (N=52), six semiannual doses of ALB 400mg (N=45), or six semiannual doses of ALB 800mg (N=47). The primary outcome amicrofilaremia at 36 months. Findings IA was more effective for completely clearing Mf than ALB 400mg or ALB 800mg (79%, CI 67-91; vs. 48%, CI 32-66 and 57%, CI 41-73, respectively). Mean % reductions in Mf counts at 36 months relative to baseline tended to be greater after IA (98%, CI 88-100) than after ALB 400mg (88%, CI 78-98) and ALB 800mg (89%, CI 79-99) (P=0.07 and P=0.06, respectively). Adult worm nest numbers (assessed by ultrasound) were reduced in all treatment groups. Treatments were well tolerated. Interpretation Repeated semiannual treatment with ALB is macrofilaricidal for W. bancrofti and leads to sustained reductions in Mf counts. This is a safe and effective regimen that could be used as MDA to eliminate LF in areas ivermectin cannot be used.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Eliza Lupenza ◽  
Dinah B. Gasarasi ◽  
Omary M. Minzi

Abstract Background Lymphatic filariasis (LF) elimination program in Tanzania started in 2000 in response to the Global program for the elimination of LF by 2020. Evidence shows a persistent LF transmission despite more than a decade of mass drug administration (MDA). It is advocated that, regular monitoring should be conducted in endemic areas to evaluate the progress towards elimination and detect resurgence of the disease timely. This study was therefore designed to assess the status of Wuchereria bancrofti infection in Culex quinqefasciatus and Anopheles species after six rounds of MDA in Masasi District, South Eastern Tanzania. Methods Mosquitoes were collected between June and July 2019 using Center for Diseases Control (CDC) light traps and gravid traps for indoor and outdoor respectively. The collected mosquitoes were morphologically identified into respective species. Dissections and PCR were carried out to detect W. bancrofti infection. Questionnaire survey and checklist were used to assess vector control interventions and household environment respectively. A Poisson regression model was run to determine the effects of household environment on filarial vector density. Results Overall, 12 452 mosquitoes were collected of which 10 545 (84.7%) were filarial vectors. Of these, Anopheles gambiae complex, An. funestus group and Cx. quinquefasciatus accounted for 0.1%, 0.7% and 99.2% respectively. A total of 365 pools of Cx. quinquefasciatus (each with 20 mosquitoes) and 46 individual samples of Anopheles species were analyzed by PCR. For Cx. quinquefasciatus pools, 33 were positive for W. bancrofti, giving an infection rate of 0.5%, while the 46 samples of Anopheles species were all negative. All 1859 dissected mosquitoes analyzed by microscopy were also negative. Households with modern latrines had less mosquitoes than those with pit latrines [odds ratio (OR) = 0.407, P < 0.05]. Houses with unscreened windows had more mosquitoes as compared to those with screened windows (OR = 2.125, P < 0.05). More than 80% of the participants own bednets while 16.5% had no protection. Conclusions LF low transmission is still ongoing in Masasi District after six rounds of MDA and vector control interventions. The findings also suggest that molecular tools may be essential for xenomonitoring LF transmission during elimination phase.


2021 ◽  
Vol 55 (5) ◽  
pp. 53-58
Author(s):  
S.V. Zhuravlev ◽  
◽  
V.N. Ardashev ◽  
E.M. Novikov ◽  
O.M. Maslennikova ◽  
...  

The authors present a stress-echocardiography (stress-echoECG) technique enhanced with dispersion mapping and heart rate variability analysis. This combination of diagnostic tools increases IHD diagnostics sensitivity and specificity to 96 and 89 % respectively.


Sign in / Sign up

Export Citation Format

Share Document