scholarly journals Enhanced BMP-2/BMP-4 ratio in patients with peripheral spondyloarthritis and in cytokine- and stretch-stimulated mouse chondrocytes

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Anne Briolay ◽  
Alaeddine El Jamal ◽  
Paul Arnolfo ◽  
Benoît Le Goff ◽  
Frédéric Blanchard ◽  
...  

Abstract Background Excessive bone formation in the entheses is one of the features of peripheral spondyloarthritis (SpA). Complex pathological mechanisms connecting inflammation, mechanical stress, and ossification are probably involved. We focused on bone morphogenetic protein (BMP)-2, -4, and -7 as possible mediators of this process. Methods BMP-2, -4, and -7 concentration was measured by ELISA in synovial fluids (SFs) of SpA (n = 56) and osteoarthritic (n = 21) patients. Mouse organotypic ankle cultures were challenged by a pro-inflammatory cocktail. Mouse primary chondrocytes, osteoblasts, or tenocytes were treated with TNF-α, interleukin (IL)-17, or IL-22 and/or subjected to cyclic stretch, or with recombinant BMP-2 or -4. Results In SpA SFs, if BMP-7 was barely detectable, BMP-2 concentration was higher and BMP-4 was lower than in osteoarthritic samples, so that BMP-2/BMP-4 ratio augmented 6.5 folds (p < 0.001). In SpA patients, TNF-α, IL-6, and IL-17 levels correlated this ratio (n = 21). Bmp-2/Bmp-4 ratio was similarly enhanced by cytokine treatment in explant and cell cultures, at mRNA level. In particular, simultaneous application of TNF-α and cyclical stretch induced a 30-fold increase of the Bmp-2/Bmp-4 ratio in chondrocytes (p = 0.027). Blockade of prostaglandin E2 and IL-6 production had almost no effect on the stretch-induced regulation of Bmp-2 or -4. Osteoinductive effects of BMP-4, and to a lesser extend BMP-2, were identified on cultured chondrocytes and tenocytes. Conclusions Our results first settle that BMP factors are locally deregulated in the SpA joint. An unexpected decrease in BMP-4 could be associated to an increase in BMP-2, possibly in response to mechanical and/or cytokine stimulations.

2000 ◽  
Vol 279 (3) ◽  
pp. H939-H945 ◽  
Author(s):  
Shareef Mustapha ◽  
Alla Kirshner ◽  
Danielle De Moissac ◽  
Lorrie A. Kirshenbaum

Nuclear factor-κB (NF-κB) is a ubiquitously expressed cellular factor regulated by the cytoplasmic factor inhibitor protein κBα (IκBα). Activation of NF-κB by cytokines, including tumor necrosis factor-α (TNF-α), requires the phosphorylation and degradation of IκBα. An anti-apoptotic role for NF-κB has recently been suggested. In the present study, we ascertained whether death-promoting signals and apoptosis mediated by TNF-α are suppressed by NF-κB in postnatal ventricular myocytes. Stimulation of myocytes with TNF-α resulted in a 12.1-fold increase ( P < 0.01) in NF-κB-dependent gene transcription and DNA binding compared with controls. This was accompanied by a corresponding increase in the NF-κB target protein A20 as determined by Western blot analysis. Vital staining revealed that TNF-α was not cytotoxic to myocytes and did not provoke apoptosis. Adenovirus-mediated delivery of a nonphosphorylatable form of IκBα to inactivate NF-κB prevented TNF-α-stimulated NF-κB-dependent gene transcription and nuclear NF-κB DNA binding. Importantly, myocytes stimulated with TNF-α and defective for NF-κB activation resulted in a 2.2-fold increase ( P < 0.001) in apoptosis. To our knowledge, the data provide the first indication that a functional NF-κB signaling pathway is crucial for suppressing death-promoting signals mediated by TNF-α in ventricular myocytes.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Jayasingha Arachchige Chathuranga C Jayasingha ◽  
Yung Hyun Choi ◽  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Chang-Hee Kang ◽  
...  

AbstractFisetin is a naturally occurring flavonoid that possesses several pharmacological benefits including anti-inflammatory activity. However, its precise anti-inflammatory mechanism is not clear. In the present study, we found that fisetin significantly inhibited the expression of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Additionally, fisetin attenuated LPS-induced mortality and abnormalities in zebrafish larvae and normalized the heart rate. Fisetin decreased the recruitment of macrophages and neutrophils to the LPS-microinjected inflammatory site in zebrafish larvae, concomitant with a significant downregulation of proinflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase-2a (COX-2a), IL-6, and TNF-α. Fisetin inhibited the nuclear localization of nuclear factor-kappa B (NF-κB), which reduced the expression of pro-inflammatory genes. Further, fisetin inactivated glycogen synthase kinase 3β (GSK-3β) via phosphorylation at Ser9, and inhibited the degradation of β-catenin, which consequently promoted the localization of β-catenin into the nucleus. The pharmacological inhibition of β-catenin with FH535 reversed the fisetin-induced anti-inflammatory activity and restored NF-κB activity, which indicated that fisetin-mediated activation of β-catenin results in the inhibition of LPS-induced NF-κB activity. In LPS-microinjected zebrafish larvae, FH535 promoted the migration of macrophages to the yolk sac and decreased resident neutrophil counts in the posterior blood island and induced high expression of iNOS and COX-2a, which was accompanied by the inhibition of fisetin-induced anti-inflammatory activity. Altogether, the current study confirmed that the dietary flavonoid, fisetin, inhibited LPS-induced inflammation and endotoxic shock through crosstalk between GSK-3β/β-catenin and the NF-κB signaling pathways.


2021 ◽  
Vol 70 (4) ◽  
pp. 429-444
Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. Methods Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. Results At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. Conclusion A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


2020 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Yousef Al Zoubi ◽  
Bashair M. Mussa ◽  
Ankita Srivastava ◽  
Abdul Khader Mohammed ◽  
Elamin Abdelgadir ◽  
...  

The recurrence of hypoglycemic episodes leads to attenuation of the normal counter-regulatory mechanisms that are controlled by the hypothalamus, which results in hypoglycemia unawareness (HU). In this case report, we described for the first time the differential expression of TNF-α, IL-1β, IL-6, and IFN-γ in a blood sample that was taken from a 27-year-old patient with type 1 diabetes mellitus (T1DM) who was diagnosed with HU. The anti-diabetic regimen is currently based on insulin injection, but the patient is planning to start the use of an insulin pump to have better control of glucose levels. Our results showed a trend toward an increase in the expression of IL-1β, IL-6, and IFN-γ in T1DM patient with HU. However, the mRNA level of TNF-α showed a significant decrease. These observations suggest that systemic inflammation could be an underlying cause of HU.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
David A Goukassian ◽  
Tengiz Tkebuchava ◽  
Evelyn Bord ◽  
Marcy Silver ◽  
Cynthia Curry ◽  
...  

Aging is a risk factor for ischemic diseases. TNF-α, a pro-inflammatory cytokine, is expressed in ischemic tissues and is known to modulate angiogenesis. Little is known about the role of TNF-α receptors (TNFR1/p55 and TNFR2/p75) in angiogenic signaling and muscle regeneration. We studied neovascularization in the hind limb ischemia (HLI) model in young and old TNFR2/p75 knockout (p75KO) and wild type (WT) age-matched controls. Between days 7–10 post-HL surgery 100% of old p75KOs experienced auto-amputation of the operated limbs, whereas none of the age-matched WT mice exhibited HL necrosis. Poor blood flow recovery in p75KOs was associated with decreased capillary density and significant reduction in the expression of VEGF mRNA transcripts in ischemic tissue. Compared to presurgery, on days 1–10 post-HL surgery there was 6–10-fold increase in the number of satellite-cells (embrionic NCAM staining) in WT mice, whereas in p75KOs after day 1 through day 10 satellite cells were not detecable. Indeed, p75KO tissue showed increased and prolonged (via day 10) inflammation - neutrophil (MPO-1) and macrophage (F/480) infiltration. Transplantation of WT/GFP (+) BM mononuclear cells into γ-irradiated p75KOs one month prior to HL surgery prevented limb loss, suggesting that ischemia-induced neovascularization and mobilization of BM-derived cells is mediated, at least in part, via TNFR2/p75 expressed in BM-derived cells. In the same BM transplantation model we evaluated the rate of proliferation (Ki67 + cells) of resident GFP (−) vs BM-derived GFP (+) cells. We found that in both WT and p75KO ischemic tissue Ki67 (+) cells almost exclusively were GFP (+), indicating that only BM-derived cells proliferate in the ischemic tissue. Interestingly, Ki67/GFP (+) cells started to appear in WT tissue by day 3 through day 21, whereas in p75KO tissue first proliferative activity was detected on day 28, suggesting extremely delayed recovery and regenaration in p75KO tissue. Our study suggests that, signaling through p75 receptor is required for collateral vessel development in ischemia-induced neovascularization as well as plays a critical role in muscle regeneration and suggest a potential gene target, which could be used to improve the repair of ischemic tissue in adults.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 745-753 ◽  
Author(s):  
Scott Convissar ◽  
Marah Armouti ◽  
Michelle A Fierro ◽  
Nicola J Winston ◽  
Humberto Scoccia ◽  
...  

The regulation of AMH production by follicular cells is poorly understood. The purpose of this study was to determine the role of the oocyte-secreted factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on AMH production in primary human cumulus cells. Cumulus cells from IVF patients were cultured with a combination of GDF9, BMP15, recombinant FSH and specific signaling inhibitors. Stimulation with GDF9 or BMP15 separately had no significant effect onAMHmRNA levels. In contrast, simultaneous stimulation with GDF9 and BMP15 (G + B) resulted in a significant increase inAMHmRNA expression. Increasing concentration of G + B (0.6, 2.5, 5 and 10 ng/mL) stimulated AMH in a dose-dependent manner, showing a maximal effect at 5 ng/mL. Western blot analyses revealed an average 16-fold increase in AMH protein levels in cells treated with G + B when compared to controls. FSH co-treatment decreased the stimulation of AMH expression by G + B. The stimulatory effect of G + B on the expression of AMH was significantly decreased by inhibitors of the SMAD2/3 signaling pathway. These findings show for the first time that AMH production is regulated by oocyte-secreted factors in primary human cumulus cells. Moreover, our novel findings establish that the combination of GDF9 + BMP15 potently stimulates AMH expression.


1996 ◽  
Vol 317 (3) ◽  
pp. 925-931 ◽  
Author(s):  
Volker DANGEL ◽  
Jeanette GIRAY ◽  
Dieter RATGE ◽  
Hermann WISSER

The regulation of the expression of β-adrenoceptors (β-ARs) is not thoroughly understood. We demonstrate that the rat heart cell-line H9c2 expresses both β1- and β2-ARs. In radioligand-binding experiments, the maximal binding capacity of (-)-[125I]-iodocyanopindolol was determined as 18±0.6 fmol/mg of protein with a KD of 35.4±4.1 pM. Competitive radioligand-binding experiments with subtype-specific β-antagonists reveal a subtype ratio of β1- to β2-ARs of 29%:71%. With competitive reverse-transcriptase PCR we found β2-mRNA to be up to 1600 times more frequent than β1-mRNA. Treatment of the H9c2 cell-line with the β-adrenergic agonist (-)-isoproterenol (10-6 M), the antagonist (-)-propranolol (10-6 M) and the glucocorticoid dexamethasone (500 nM) induces regulatory effects on both the β-AR protein and mRNA level. Isoproterenol treatment leads to down-regulation of the total receptor number by 56±4%, due to a decrease in β2-ARs, while maintaining the β1-AR number constant. On the transcription level, both β1-and β2-mRNAs are decreased by 30% and 42% respectively. mRNA stability measurements reveal a reduced half-life of β2-mRNA from 9.3 h to 6.5 h after isoproterenol treatment. Incubation of cells with (-)-propranolol does not affect the amounts of β-ARs and their mRNAs. Dexamethasone induces a 1.8±0.2-fold increase in β-AR number over the basal level as well as a 1.9±0.2-fold increase in the amount of β2-mRNA. Because the half-life of β2-mRNA was unaffected by dexamethasone, the increased β2-mRNA level must be due to an enhanced transcription rate. The β1-mRNA levels are unchanged during dexamethasone-incubation of the cells. Our data clearly demonstrate that treatment of H9c2 rat heart cells with isoproterenol and dexamethasone induces alterations in the level of RNA stability as well as gene transcription, leading to altered receptor numbers.


2020 ◽  
Author(s):  
Robert M. Moldwin ◽  
Vishaan Nursey ◽  
Oksana Yaskiv ◽  
Siddhartha Dalvi ◽  
Michael Funaro ◽  
...  

AbstractAimsTo quantify the number of immune cells in the bladder urothelium and concentrations of urinary cytokines in patients with Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). To identify differences in these measures in IC/BPS patients with Hunner’s lesions (IC/BPS-HL) and without Hunner’s lesions (IC/BPS-NHL).MethodsBladder tissue biopsies were obtained from 48 patients with IC/BPS-HL and unaffected controls (UC) and stained with antibodies for various immune cell markers such as CD138, CD20 and CD56. Levels of cytokines (Interferon (IFN)-γ, Interleukin (IL)-1β, IL-2, IL- 4, IL-6, IL-8, IL12P70, IL-13, and TNF-α) were measured from normalized urine obtained from 18 IC/BPS-HL, 18 IC/BPS-NHL, and 4 UC.ResultsNumbers of CD138+ plasma cells, CD20+ B cells, and CD3+ T cells were significantly increased (50 fold, 30 fold, and an almost 3 fold increase, respectively; p-values: 1.34E-06, 3.26E-04, and 2.52E-6) in the bladders of IC/BPS-HL patients compared to UC. Patients with IC/BPS-HL had significantly elevated urinary levels of IL-6 (p=0.0028) and TNF-α (p=0.009) compared to patients with IC/BPS-NHL and UC. In contrast, IL-12p70 levels were significantly higher in the patients with IC/BPS-NHL than in HL patients (p=0.033). No significant difference in IL-12p70 levels were observed between IC/BPS-HL and UC.ConclusionDifferent cytokines were elevated in the urine of IC/BPS patients with and without HL, suggesting differences in underlying disease processes. Elevated levels of CD138+, CD20+, and CD3+ cells in HL indicate B and T-cell involvement in lesion formation. Determining which cytokines and immunological pathways are present in IC/BPS-HL could elucidate the disease mechanism.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3904-3904
Author(s):  
Soniya Nityanand ◽  
Naresh Kumar Tripathy ◽  
Chandra Prakash Chaturvedi ◽  
Ekta Minocha ◽  
Akhilesh Sharma ◽  
...  

Abstract Mesenchymal stem cells (MSC) are an important component of the hematopoietic niche in the bone marrow (BM) and regulate hematopoiesis by producing a variety of cytokines and growth factors. In aplastic anemia (AA), most of the studies have attributed the reduced hematopoiesis to a defect in hematopoietic stem cells (HSC) and limited data is available on the role of BM-MSC in AA. Therefore, the objective of the present study was to evaluate the expression of hematopoiesis regulatory genes, viz. granulocyte colony stimulating factor (G-CSF), stromal cell derived factor (SDF-1), stem cell factor (SCF), tumor necrosis factor-alpha (TNF-α) macrophage inflammatory protein-1 alpha (MIP-1α) and transforming growth factor-beta (TGF-β) in BM-MSC of patients with AA and compare it with BM-MSC of control group. Twenty patients of idiopathic acquired AA with a median age of 25.5 years (range: 12-64 years) were included in the study. The control group consisted of 10 healthy volunteers and 10 patients with iron deficiency anemia or immune thrombocytopenic purpura. The median age of the control group was 20 years (range: 11-62 years). The BM-MSC were isolated and cultured as per protocol standardized and previously published by us. Third passage cells were used in the study. The MSC were characterized both by their phenotypic markers and by their ability to differentiate into adipogenic and osteogenic lineages. The expression of hematopoiesis regulatory genes was studied by real-time quantitative polymerase chain reaction (qRT-PCR). The GAPDH was used as the housekeeping gene to normalize the transcript levels and the fold change in the gene expression was calculated by 2-ΔΔCtmethod. The BM-MSC of AA patients and controls had similar morphology and expression of mesenchymal markers CD73, CD105, CD90 and CD166, absence of expression of hematopoietic markers CD13, CD34 and CD45 and of HLA-DR. However, the BM-MSC of AA patients exhibited a higher adipogenic and a lower osteogenic differentiation in comparison to those of controls. Further, the BM-MSC of AA patients in comparison to those of control group, had a higher expression of G-CSF (fold increase: 1.99; p<0.0001), SDF-1 (fold increase: 1.37; p<0.01) and TNF-α (fold increase: 10.68; p<0.0001) and a very low expression of MIP-1α (fold decease: 50.0; p<0.0001) transcripts. The expression of SCF and TGF-β transcripts were comparable in the BM-MSC of both the groups (p>0.05). Though AA patients have been shown to have elevated levels of G-CSF in the peripheral blood and BM but there is only one previous report on G-CSF gene expression in BM-MSC of AA, in which a higher expression was observed and thus corroborates with our data. There is no data available on SDF-1 levels in the peripheral blood and bone marrow of AA patients. We have observed higher gene expression of SDF-1 in BM-MSC of AA patients. The higher expression of G-CSF and SDF-1, pro-hematopoietic factors, in AA may be due to a compensatory response of the BM stroma to boost the hematopoiesis. Our observation of higher TNF-α gene expression in BM-MSC corroborates with previous reports on higher levels of this anti-hematopoietic cytokine in the BM plasma of patients with AA and indicates that MSC could contribute to the increase in the TNF-α level in the BM of AA patients. A conspicuous observation of our study was a markedly decreased expression of MIP-1α gene in BM-MSC of AA and to the best of our knowledge this is the first report on MIP-1α in AA. MIP-1α is a chemokine which has been shown to inhibit proliferation of HSC in vitro and thus may help to maintain HSC in an undifferentiated state. Furthermore, MIP-1α has also been reported to mediate interaction of HSC with stromal cells in BM and may have a role in supporting hematopoiesis. Its precise role in AA needs to be studied further. We are currently studying the levels of these cytokines/growth factors in the BM plasma of the same cohort of AA patients and controls and the data will be presented. Our study thus shows that BM-MSC of AA patients have altered expression of hematopoiesis regulatory genes which may contribute to the pathobiology of the disease. Disclosures Nityanand: Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment, Research Funding. Tripathy:Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment. Chaturvedi:Dept of Biotechnology, Govt of India: Employment. Minocha:Dept of Science and Technology, Govt of India: Other: PhD scholarship. Sharma:Sanjay Gandhi Post Graduate Institute of Medical Sciences: Employment. Rahman:SGPGI, Lucknow , India: Employment, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document