scholarly journals Analyses and findings of unusual substitute materials in a raincoat from WWII

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Clara Bratt Lauridsen ◽  
Theis Brock-Nannestad ◽  
Kim Pilkjær Simonsen

AbstractDue to the coating materials used, historic raincoats are vulnerable to degradation and rarely survive long periods of time. The investigated raincoat dating from 1943 is no exception—the coating is unusually stiff and flaking off in areas around folds and cracks. Study into its material composition can contribute to important knowledge of the availability of materials for waterproof clothing during the time of the German occupation of Denmark (1940–1945) when the usual materials for raincoats, cotton fabric and rubber, were in short supply. Optical microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) identified the fabric to consist of rayon staple fibres and paper yarn, and the coating to be based on cellulose nitrate (CN) lacquer and an unknown plasticiser. Though the results are atypical for a raincoat, they are in good accordance with the raw materials available in Denmark in 1943. Analysis by matrix-assisted laser desorption-ionisation mass spectrometry (MALDI-MS), and 1H and 13C nuclear magnetic resonance spectroscopy (NMR), identified the plasticiser as poly(1,3-butylene) adipate. Powder X-ray diffraction (PXRD) moreover identified the pigment as titanium white of the anatase form. By historical discussion, this study argues that IG Farben is the likely producer of poly(1,3-butylene) adipate, even though the first known marketing of the plasticiser is from 1986 where the Swiss firm Ciba-Geigy introduced poly(1,3-butylene) adipate as a plasticiser for PVC cling films under the tradename Reoplex® 346. The results give an interesting insight into the use of substitution products during WWII and provide new information on polymer science of the time.

2021 ◽  
Author(s):  
Clara Bratt Lauridsen ◽  
Theis Brock-Nannestad ◽  
Kim Pilkjær Simonsen

Abstract Due to the coating materials used, historic raincoats are vulnerable to degradation and rarely survive long periods of time. The investigated raincoat dating from 1943 is no exception – the coating is unusually stiff and flaking off in areas around folds and cracks. Study into its material composition can contribute to important knowledge of the availability of materials for waterproof clothing during the time of the German occupation of Denmark (1940-1945) when the usual materials for raincoats, cotton fabric and rubber, were in short supply. Optical microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) identified the fabric to consist of rayon stable fibers and paper yarn, and the coating to be based on cellulose nitrate (CN) lacquer, an unknown plasticizer and titanium white (TiO2). Though the results are atypical for a raincoat, they are in good accordance with the raw materials available in Denmark in 1943. Analysis by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), and 1H and 13C nuclear magnetic resonance spectroscopy (NMR), identified the plasticiser as poly(1,3-butylene) adipate. Powder X-ray diffraction (PXRD) moreover identified the titanium white pigment as the anatase form. By historical discussion this study argues that IG Farben AG is the likely producer of poly(1,3-butylene) adipate, even though the first known marketing of the plastiticiser is from 1986 where the Swiss firm Ciba-Geigy introduced poly(1,3-butylene) adipate as a plasticiser for PVC cling films under the tradename Reoplex® 346. The finding is an extraordinary example on how advanced the chemical industry was in the early 1940’s when it came to polymer science.


2012 ◽  
Vol 22 (1) ◽  
pp. 115-134 ◽  
Author(s):  
Patricia A. McAnany

A monolithic view of Classic Maya society as dominated by divine rulers who inexplicably ceased to erect monuments with long-count dates during the ninth century is examined by reference to new information from Terminal Classic sites in the Sibun Valley of Belize. In this locale and elsewhere, the construction of circular one-room buildings — with striking associated artefacts — may be interpreted as signalling social tensions between the orthodoxy of Classic Maya divine rulers and the more heterodoxic beliefs and practices associated with circular structures built at the end of the Classic period. The round buildings are contextualized within the diversity of architectural expressions of the Sibun Valley and also within a peninsula-wide network of shrines. The chronological placement and character of the Sibun shrines is discussed by way of radiocarbon assays, obsidian sourced by INAA, and raw materials used for groundstone at sites throughout the valley. The presence of marine shell and speleothems — likely used as architectural adornment — found in close association with Sibun Valley round buildings permits discussion of the manner in which elements of the local effected a translation of heterodoxic tenets into vernacularized shrine architecture.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3640
Author(s):  
Vito Gigante ◽  
Luca Panariello ◽  
Maria-Beatrice Coltelli ◽  
Serena Danti ◽  
Kudirat Abidemi Obisesan ◽  
...  

The development of new bio-based coating materials to be applied on cellulosic and plastic based substrates, with improved performances compared to currently available products and at the same time with improved sustainable end of life options, is a challenge of our times. Enabling cellulose or bioplastics with proper functional coatings, based on biopolymer and functional materials deriving from agro-food waste streams, will improve their performance, allowing them to effectively replace fossil products in the personal care, tableware and food packaging sectors. To achieve these challenging objectives some molecules can be used in wet or solid coating formulations, e.g., cutin as a hydrophobic water- and grease-repellent coating, polysaccharides such as chitosan-chitin as an antimicrobial coating, and proteins as a gas barrier. This review collects the available knowledge on functional coatings with a focus on the raw materials used and methods of dispersion/application. It considers, in addition, the correlation with the desired final properties of the applied coatings, thus discussing their potential.


2014 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Saibatul Hamdi

The purpose of this research is to know the mechanical strength of gypsum board by utilizing waste sawn wood. Raw materials used consist of flour, gypsum,wood particles, boraks and kambang (Goniothalamus sp), wood tarap (Artocarpus elasticus REINW) and lua (Ficus glomerata ROXB). Wood particle 40 mesh and 60 mesh, concentrations boraks of 1 and 2 and the percentage particles of gypsum sawn timber is 300, 400 and 500%. The results showed that the average value Modulus of Rufture (MoR) in lua wood ranges from 12.55 – 14,47 kgcm2, wood kambang 25.10-31,11 kgcm2 and wood tarap 19.20- 24,18 kgcm2. As for Modulus of Elasticity (MoE) on the lua 1129,80- 2092,70 kgcm2, wood kambang 2512,37-3971,32 kgcm2 and tarap 2050,63-2691,09 kgcm2. Gypsum board are mechanical properties do not meet quality standards created SNI 03-6434-2000.Keywords: sawdust, lua, kambang, tarap, gypsum, mechanical


Author(s):  
Chernichkina A.D.

A large number of biologically active substances, organic acids, tannins, and pectin substances were detected during the study of fruits, leaves, and pulp of the fruits of mountain Ash. The content of these substances in leaves and pulp will significantly expand the arsenal of medicinal plant raw materials used. Given the wide distribution of mountain Ash in the territory of the Russian Federation, harvesting leaves from the same plants after harvesting the fruit and using pulp will make it possible to obtain new phytopreparations.


Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 71-78
Author(s):  
Ekaterina Minnikhanova ◽  
Nataliya Zavorokhina ◽  
Anna Gilina

Abstract The inclusion of polysaccharide thickeners in the recipes of sweet dishes increases the functional reserves of the body, contributes to the preservation of health and the prevention of diseases. The purpose of the research is to study the sensory characteristics of polysaccharides of various nature when combined with food acids, to develop a recipe for a basic mixture of low-calorie meals for public catering. The authors analyzed citric, lactic and succinic acids in combinations with polysaccharides of various nature. Organoleptic tests were evaluated by a touch panel. The organization of the tasting analysis corresponded to GOST ISO 6658-2016; the consistency was determined according to GOST 31986-2012, GOST ISO 11036-2017, GOST ISO 8588-2011. The optimal organoleptic combinations of the presented food acids and complex additives of sweeteners (CDP) were identified, which included aspartame, sodium saccharinate, Sucralose, sweetness coefficient – 340: the mixture with citric acid had a long pleasant aftertaste without foreign tastes and the best taste characteristics. Using the “A-not A” method, we found that the sample with the addition of CDP is identical to the sucrose solution. In the second part of the study, polysaccharides were added to model samples of acids with complex sweeteners; the best sensory characteristics were obtained by model samples consisting of a mixture of low-esterified Apple pectin with lactic acid and KDP. The technology of obtaining a stable elastic jelly using low-esterified Apple pectin has been developed, since the complex mixture of sweeteners and food acids does not have a dehydrating effect. Developed a dry mix recipe that can serve as a basic development, low-calorie sweet products for catering and has a variance of use of lactic and succinic acids, depending on the flavor characteristics of the raw materials used and its corrective ability.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Ivan Yulianto ◽  
Ario Seno Nugroho

An alternative strategy to reduce the trade balance deficit simultaneously to increase the net foreign exchange is the import-substitution for raw materials used to produce an export goods. This paper proposes an import substitution study on footwear products that have a dependency on imported raw materials by 70 percent, with the largest composition being leather raw materials by 67 percent. This paper analyzes the relationship between subsidies on the leather industry to leather import-substitution, multiplier effect to footwear sector, and Indonesia trade balance. Author make use of simulation the on Input-Output 2010 table and Computable General Equilibrium (CGE) Model. The simulation shows 100 billion subsidies on the leather sector, lead for the substitution-import of leather by 7,94 million rupiah, increase the net export foreign exchange by 1.1 billion rupiah of the footwear sector, and for overall, increase Indonesia trade balance deficit by 68 billion rupiah. Keywords: Computable General Equilibrium, footwear, leather, net foreign exchange, subsidy.ABSTRAK: Salah satu terobosan untuk mengurangi defisit neraca perdagangan dan meningkatkan nilai neto devisa ekspor adalah dengan substitusi impor bahan baku yang digunakan untuk memproduksi barang ekspor. Paper ini mengusulkan kajian substitusi impor pada produk alas kaki yang mempunyai ketergantungan bahan baku impornya sebesar 70 persen, dengan komposisi terbesar adalah bahan baku kulit sebesar 67 persen. Tujuan penelitian ini adalah untuk mengetahui dampak stimulus subsidi pada industri kulit terhadap subtitusi impor kulit, dukungan multiplier sektor kulit terhadap sektor alas kaki, serta terhadap devisa ekspor Indonesia. Penelitian ini menggunakan simulasi model Computable General Equilibrium (CGE). Hasil simulasi menunjukkan stimulus subsidi sebesar 100 milyar rupiah pada sektor kulit memberikan substitusi bahan baku kulit sebesar 7,94 juta rupiah, menaikkan devisa ekspor sektor alas kaki sebesar 1.1 miliar rupiah, serta secara keseluruhan menambah defisit neraca berjalan Indonesia sebesar 68 miliar rupiah. Kata kunci: alas kaki, Computable General Equilibrium (CGE), devisa ekspor, kulit, subsidi.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
Norikazu Sugaya

This new surface treatment is simple and easy as well as low in cost. The processes can even be performed by hand. Pharmaceutical raw materials used for the surface treatment, such as hydrochloric acid and nitric acid used in a mixed acid washing process and vegetable oil used in an organic film forming process, are easily obtained in many countries.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document