scholarly journals Cotton canvas trousers washing: an inception of a new horizon in apparel industry

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Md. Sumon Miah ◽  
Md. Mashiur Rahman Khan ◽  
Md. Nakib-Ul Hasan

AbstractNowadays, fashionable trouser (denim) with washing effect is very popular, especially among the youth. The global fashion trend has led to the development of diverse washing processes that are predominantly applied to denim fabric. However, no known research has studied the application of the washing effect on canvas fabric. Therefore, this paper aims to make fashionable canvas fabric trousers by applying various washing effects. To do so, ready-to-dye canvas fabric trouser was constructed, then dyed with dischargeable reactive dye (Lava). Chemical washing processes such as whisker, enzyme, and PP spray were then applied on dyed canvas trousers. Finally, developed samples were being characterized by mechanical tests such as tensile strength, tear strength, stiffness, abrasion, pilling, colorfastness to wash, and colorfastness to rubbing. Besides, to evaluate fabric surface, various tests such as Scanning Electronic Microscope (SEM), Reflectance% values have also been characterized. Tensile strength, tear strength, stiffness, reflectance% value, and wear index% changed significantly for every subsequent process. The tensile strength of finished trousers was 489.87 N at warp and 350.57 N at weft direction and the tear strength was 48.01 N and 35.56 N at warp and weft direction, respectively. The reflectance% value of 18.74 was observed at the PP sprayed area. Overall, the research revealed the possibility of using cotton canvas as a pair of fashionable trousers contributing to the development of the apparel industry.

2019 ◽  
Vol 2019 ◽  
pp. 86-90
Author(s):  
Faiza Anwar ◽  
Ahmad Abdullah

Denim washing is not such an old thing that is not known to us. It is done to get proper aesthetic look of the fabric. Denim washing or somehow called as denim finishing has its own scope in the market or industrial scale as it enhances the functional activity as well as the make fabric aesthetically more appealing This research work focuses on the different washing techniques of denim fabric keeping the environment as major concern with enzyme (Lava Cell NHC, bio-polish (Lava Cell NBP, enzyme and stone, resin (PULCRA STABITEX ETR+dip and resin spray. For this purpose, the leg tubes of 22×22 inches of denim fabric are made and prescribed recipes are applied on the fabric in an automatic tumble TONELLO machine. After that different tests were performed to investigate change in dimensional, pilling resistance, tensile Strength, tear Strength, absorbency and change in shade variation after different washing. And surface morphology of fabric samples after washing was investigate by SEM analysis.


2021 ◽  
Vol 6 (7) ◽  
pp. 77-81
Author(s):  
Abdullah Al Rakib Shikder ◽  
Jabed Hossen Emon ◽  
Md. Humayun Kabir Khan ◽  
Md. Mehedi Hasan ◽  
Md. Abu Bakar Siddiquee

The study was focused on investigating the impact of different washing processes (dark shade, medium shade, light shade) on various properties of denim fabric. Two different types of fabrics with twill and dobby weave constructions were produced from cotton, spandex, and polyester yarn, and different types of washing processes were applied. Dimensional stability, tensile strength, tearing strength, EPI and PPI, weight, colorfastness to rubbing, colorfastness to perspiration (acid and alkaline), and colorfastness to water was investigated and comparisons were made statistically between the before washed sample and after washed sample. It is found that the process result shows better tear and tensile strength in case of dark & medium shade wash than light shade wash. On the other hand, weight and EPI & PPI have shown better result for light wash than other wash. Colorfastness to rubbing, Colorfastness to water, and Colorfastness to perspiration (acid and alkaline medium) are similar. The shrinkage% is higher especially in the weft direction of the fabric for light wash than the dark wash.


2018 ◽  
Vol 9 (3-4) ◽  
pp. 87-102
Author(s):  
KP Arul Kumar ◽  
S Soundararajan

LDPE-poly-lactic acid (PLA) (60:40%) was melt blended with nanoclay (1, 2, and 3%) and benzophenone (3%) using maleic anhydride-grafted LLDPE (LLDPE- g-MAn; 3%) as compatibilizer in a twin screw compounding extruder. Tubular blown films extruded using Dr Collins blown film extruder were subjected to various mechanical tests like tensile strength, elongation at break, and so on, optical tests, and permeability tests for oxygen and water vapor. The tensile strength was increased as the nanoclay percentage was increased (upto 2 wt%) and the elongation at break was decreased. Tear strength was increased, burst strength was decreased, and the dart impact strength was constant. The coefficient of friction was little decreased. The haze was increased and luminous transmittance was decreased. Water vapor transmittance and oxygen gas permeability were decreased. Scanning electron microscope images were taken to determine the morphological changes on the samples. Characterization by X-ray diffraction was carried out to analyze the shift in peak when nanoclay was blended at various proportions. In conclusion, LDPE with benzophenone is photodegradable and PLA is biodegradable. Hence, in this study, LDPE-PLA (60:40%) with benzophenone (3%) is photo-/biodegradable. Inclusion of nanoclay increased the mechanical properties like tensile strength, tear strength, and barrier properties. Furthermore, nanoclay improves the compatibility apart from LLDPE- g-MAn.


2021 ◽  
Vol 3 (2) ◽  
pp. 76-83
Author(s):  
Luciana Luciana ◽  
Elly Koesneliwati

The process of bleach washing on denim fabrics produces a paler or lighter shabby effect. The shabby effect is produced by using an oxidizing agent. The application of sodium hypochlorite can cause a decrease in color aging of denim fabrics and high tensile strength. The pH condition also affects the occurrence of oxycellulose damage which will affect the final result. Inappropriate pH will cause a very high oxidation process and produce a less shabby effect and can cause a decrease in tensile strength. Therefore, the concentration of NaOCl and pH must be adjusted properly so that optimal results are obtained. The purpose of this study was to determine the effect of optimum concentration of sodium hypochorite (NaOCl) and pH on the physical properties of denim fabric. After the process of bleach washing process experiment was carried out, a test was carried out based on two-factor Anova statistical data and the optimum visual test fabric results were obtained at a NaOCl concentration of 2 g/L using alkaline pH (10-11). The test values were obtained as follows: color fastness to rubbing are 3-4 for dry, 2-3 for wet, tensile strength 67.4 kg in warp direction, 43.1 in weft direction, fabric stiffness in warp direction 430.48, weft direction 344.54. The factory standard for a tensile strength of 65 kg warp direction, 40 kg weft direction, color fastness to rubbing 3 for dry rubbing and 2 for wet rubbing. Keywords: bleach washing, denim, sodium hypochlorite, oxycellulose, color fastnes   


2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Le Thuy Hang ◽  
Do Quoc Viet ◽  
Nguyen Pham Duy Linh ◽  
Vu Anh Doan ◽  
Hai-Linh Thi Dang ◽  
...  

In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 wt/wt). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E’) in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.


2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.


2010 ◽  
Vol 4 (4) ◽  
pp. 329-337
Author(s):  
Fabio Pereira ◽  
◽  
Fabiana Vieira ◽  
Luiz de Castro ◽  
Ricardo Michel ◽  
...  

In this work the influence of different configurations in the sample preparation process on commercial polyacrylonitrile-based carbon fibers mechanical tests were studied. Mechanical properties, such as tensile strength, Young’s modulus, elongation and Weibull modulus, were evaluated. The results showed that all sample preparation steps may have strong influence on the results.


Sign in / Sign up

Export Citation Format

Share Document