scholarly journals Overexpression of Glutamine:Fructose-6-Phosphate Amidotransferase in Rat-1 Fibroblasts Enhances Glucose-Mediated Glycogen Accumulation via Suppression of Glycogen Phosphorylase Activity*

Endocrinology ◽  
2000 ◽  
Vol 141 (6) ◽  
pp. 1962-1970 ◽  
Author(s):  
Errol D. Crook ◽  
Gregory Crenshaw ◽  
Geddati Veerababu ◽  
Lalit P. Singh

Abstract The hexosamine biosynthesis pathway (HBP) mediates many of the adverse effects of excess glucose. We have shown previously that glucose down-regulates basal and insulin-stimulated glycogen synthase (GS) activity. Overexpression of the rate-limiting enzyme in the HBP, glutamine:fructose-6-phosphate amidotransferase (GFA), mimics these effects of high glucose and renders the cells more sensitive to glucose. Here we examine the role of the HBP in regulating cellular glycogen content. Glycogen content and glycogen phosphorylase (GP) activity were determined in Rat-1 fibroblasts that overexpress GFA. In both GFA and controls there was a dose-dependent increase in glycogen content (∼8-fold) in cells cultured in increasing glucose concentrations (1–20 mm). There was a shift to the left in the glucose dose-response curve for glycogen content in GFA cells (ED50 for glycogen content = 5.80 ± 1.05 vs. 8.84 ± 0.87 mm glucose, GFA vs. control). Inhibition of GFA reduced glycogen content by 28.4% in controls cultured in 20 mm glucose. In a dose-dependent manner, glucose resulted in a more than 35% decrease in GP activity in controls. GP activity in GFA cells was suppressed compared with that in controls, and there was no glucose-induced down-regulation of GP activity. Glucosamine and uridine mimicked the effects of glucose on glycogen content and GP activity. However, chronic overexpression of GFA is a unique model of hexosamine excess, as culturing control cells in low dose glucosamine (0.1–0.25 mm) did not suppress GP activity and did not eliminate the glucose-mediated down-regulation of GP activity. We conclude that increased flux through the HBP results in enhanced glycogen accumulation due to suppression of GP activity. These results demonstrate that the HBP is an important regulator of cellular glucose metabolism and supports its role as a cellular glucose/satiety sensor.

2005 ◽  
Vol 25 (21) ◽  
pp. 9713-9723 ◽  
Author(s):  
Young-Bum Kim ◽  
Odile D. Peroni ◽  
William G. Aschenbach ◽  
Yasuhiko Minokoshi ◽  
Ko Kotani ◽  
...  

ABSTRACT Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3β (GSK3β) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.


2006 ◽  
Vol 188 (14) ◽  
pp. 5266-5272 ◽  
Author(s):  
Nora Alonso-Casajús ◽  
David Dauvillée ◽  
Alejandro Miguel Viale ◽  
Francisco José Muñoz ◽  
Edurne Baroja-Fernández ◽  
...  

ABSTRACT To understand the biological function of bacterial glycogen phosphorylase (GlgP), we have produced and characterized Escherichia coli cells with null or altered glgP expression. glgP deletion mutants (ΔglgP) totally lacked glycogen phosphorylase activity, indicating that all the enzymatic activity is dependent upon the glgP product. Moderate increases of glycogen phosphorylase activity were accompanied by marked reductions of the intracellular glycogen levels in cells cultured in the presence of glucose. In turn, both glycogen content and rates of glycogen accumulation in ΔglgP cells were severalfold higher than those of wild-type cells. These defects correlated with the presence of longer external chains in the polysaccharide accumulated by ΔglgP cells. The overall results thus show that GlgP catalyzes glycogen breakdown and affects glycogen structure by removing glucose units from the polysaccharide outer chains in E. coli.


2011 ◽  
Vol 39 (06) ◽  
pp. 1253-1260 ◽  
Author(s):  
Sang Mi Han ◽  
Joo Hong Yeo ◽  
Yoon Hee Cho ◽  
Sok Cheon Pak

For cosmetic reasons, the demand for effective and safe skin-whitening agents is high. Since the key enzyme in the melanin synthetic pathway is tyrosinase, many depigmenting agents in the treatment of hyperpigmentation act as tyrosinase inhibitors. In this study, we have investigated the hypo-pigmentary mechanism of royal jelly in a mouse melanocyte cell line, B16F1. Treatment of B16F1 cells with royal jelly markedly inhibited melanin biosynthesis in a dose-dependent manner. Decreased melanin content occurred through the decrease of tyrosinase activity. The mRNA levels of tyrosinase were also reduced by royal jelly. These results suggest that royal jelly reduces melanin synthesis by down-regulation of tyrosinase mRNA transcription and serves as a new candidate in the design of new skin-whitening or therapeutic agents.


Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.


Development ◽  
1976 ◽  
Vol 35 (2) ◽  
pp. 335-343
Author(s):  
Charles L. Rutherford

Ultra-microfluorometric techniques were adapted to follow the time sequence of glycogen degradation during the differentiation of two cell types in Dictyostelium discoideum. Glycogen content, glycogen phosphorylase activity, and inorganic phosphate accumulation were localized in specific cell types during stalk and spore development. Glycogen levels in pre-stalk cells remained constant during the pseudoplasmodium and early culmination stages of development. However, as pre-stalk cells migrated into the position of stalk formation, a cell specific degradation of glycogen was observed. The loss of glycogen from pre-stalk cells was accompanied by an increase in the activity of glycogen phosphorylase. This increase in activity from 0·04 to 0·14 moles/h/kg dry wt. occurred as pre-stalk cells entered the position of stalk formation. An inverse relationship was found between glycogen levels and inorganic phosphate (Pi) levels in the developing stalk. During the process of stalk construction, a gradient of Pi levels occurred from the apex to the base of the developing stalk. Glycogen degradation from pre-spore cells lagged behind that of pre-stalk cells. No change in pre-spore cell glycogen levels was observed until stalk construction was nearly completed. The results emphasize the importance of the physical position of a cell with respect to its composition and fate during development.


1985 ◽  
Vol 40 (9-10) ◽  
pp. 670-676 ◽  
Author(s):  
Gerd Gäde

Abstract Although crude extracts of cockroach (Periplaneta amencana) corpora cardiaca have been shown previously to affect the activity of adenylate cyclase and phosphorylase, we demonstrate in the present study for the first time that low concentrations (0.5 to 5 pmol) of the synthetic myoactive peptides. M I and M II, also affect these systems; these myoactive peptides are identical to the hypertrehalosaemic hormones I and II, and cause an increase in the concentration of the second messenger cyclic AMP in the fat body.In addition, both octapeptides activate fat body glycogen phosphorylase and promote breakdown of fat body glycogen. Both peptides increase the levels to haemolymph carbohydrate in a dose-dependent manner.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770163 ◽  
Author(s):  
Niharika Sinha ◽  
Prashanta Kumar Panda ◽  
Prajna Paramita Naik ◽  
Tapas K Maiti ◽  
Sujit K Bhutia

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin–induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44− population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-β-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3β inhibitor, rescued the Abrus agglutinin–stimulated inhibition of β-catenin and phosphorylated glycogen synthase kinase 3β in FaDu cell–derived orospheres confirming importance of Wnt signaling in Abrus agglutinin–mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate–ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin–mediated caspase-3 activity and β-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species–mediated apoptosis.


1976 ◽  
Vol 231 (4) ◽  
pp. 1285-1289 ◽  
Author(s):  
O Giger ◽  
RE McCallum

The present study was undertaken to characterize endotoxin-induced changes in carbohydrate metabolism and more specifically, to determine the contribution of glycogenolysis to the loss of liver glycogen. Female ICR mice, fasted overnight, were injected with a median lethal dose (LD50, 9 mg/kg) of endotoxin extracted from Salmonella typhimurium strain SR-11. Glycogen synthase and glycogen phosphorylase activities were measured at 0.5 and 6 h after treatment. Endotoxin treatment did not alter total glycogen synthase activity, but the amount of enzyme present in the active form was significantly lower in endotoxic mice. There was no significant increase in glycogen phosphorylase activity in endotoxin-treated mice. Glycogen phosphorylase was activated to the same extent in control and endotoxic mice by decapitation or intravenous epinephrine (25 or 1 mug/kg). The results of this study indicate no significant increase in glycogen phosphorylase activity in endotoxic mice, contraindicating enhanced glycogenolysis as a mechanism for depletion of carbohydrate following endotoxin injection. Altered activation of glycogen synthase, however, may contribute to the loss of glycogen during endotoxemia.


2006 ◽  
Vol 291 (3) ◽  
pp. E557-E565 ◽  
Author(s):  
Haiyan Yu ◽  
Michael F. Hirshman ◽  
Nobuharu Fujii ◽  
Jason M. Pomerleau ◽  
Lauren E. Peter ◽  
...  

AMP-activated protein kinase (AMPK) is a heterotrimeric complex that works as an energy sensor to integrate nutritional and hormonal signals. The naturally occurring R225Q mutation in the γ3-subunit in pigs is associated with abnormally high glycogen content in skeletal muscle. Becauses skeletal muscle accounts for most of the body's glucose uptake, and γ3 is specifically expressed in skeletal muscle, it is important to understand the underlying mechanism of this mutation in regulating glucose and glycogen metabolism. Using skeletal muscle-specific transgenic mice overexpressing wild type γ3 (WTγ3) and R225Q mutant γ3 (MUTγ3), we show that both WTγ3 and MUTγ3 mice have 1.5- to 2-fold increases in muscle glycogen content. In WTγ3 mice, increased glycogen content was associated with elevated total glycogen synthase activity and reduced glycogen phosphorylase activity, whereas alterations in activities of these enzymes could not explain elevated glycogen in MUTγ3 mice. Basal, 5-aminoimidazole- AICAR- and phenformin-stimulated AMPKα2 isoform-specific activities were decreased only in MUTγ3 mice. Basal rates of 2-DG glucose uptake were decreased in both WTγ3 and MUTγ3 mice. However, AICAR- and phenformin-stimulated 2-DG glucose uptake were blunted only in MUTγ3 mice. In conclusion, expression of either wild type or mutant γ3-subunit of AMPK results in increased glycogen concentrations in muscle, but the mechanisms underlying this alteration appear to be different. Furthermore, mutation of the γ3-subunit is associated with decreases in AMPKα2 isoform-specific activity and impairment in AICAR- and phenformin-stimulated skeletal muscle glucose uptake.


Reproduction ◽  
2012 ◽  
Vol 143 (6) ◽  
pp. 815-823 ◽  
Author(s):  
Bernardo G Gasperin ◽  
Rogério Ferreira ◽  
Monique T Rovani ◽  
Joabel T Santos ◽  
José Buratini ◽  
...  

Fibroblast growth factors (FGFs) are involved in paracrine control of follicle development. It was previously demonstrated that FGF10 decreases estradiol (E2) secretion in granulosa cell culture and that theca cell FGF10 mRNA expression is decreased in healthy follicles from abattoir ovaries. The main objectives of this study were to evaluate FGF10 and FGFR2b mRNA expression during follicular development in vivo, to evaluate the effect of FGF10 on follicle growth using Bos taurus taurus cows as a model, and to gain more insight into the mechanisms through which FGF10 inhibits steroidogenesis. Messenger RNA encoding both FGF10 and FGFR2b (main FGF10 receptor) was significantly more expressed in subordinate follicles (SFs) than in dominant follicles (DFs). The intrafollicular injection of FGF10 into the largest growing follicle at 7–8 mm in diameter interrupted the DF growth in a dose-dependent manner (11±0.4, 8.3±1 and 5.9±0.3 mm for 0, 0.1, and 1 μg/ml FGF10, respectively, at 72 h after treatment; P<0.05). In a third experiment, follicles were obtained 24 h after FGF10 (1 μg/ml) or PBS treatment through ovariectomy. In theca cells, FGF10 treatment did not affect mRNA encoding steroidogenic enzymes, LHCGR and IGFBPs, but significantly upregulated FGF10 mRNA expression. The expression of CYP19A1 mRNA in granulosa cells was downregulated by FGF10 treatment, which was accompanied by a 50-fold decrease in E2 production, and decreased cyclin D2 mRNA. These results have shown that FGF10 and its receptor FGFR2b are more expressed in SFs and provide solid in vivo evidence that FGF10 acts as an important regulator of follicular growth in cattle.


Sign in / Sign up

Export Citation Format

Share Document