Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth

Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 627-636 ◽  
Author(s):  
D.J. Goff ◽  
C.J. Tabin

Hox genes are important regulators of limb pattern in vertebrate development. Misexpression of Hox genes in chicks using retroviral vectors provides an opportunity to analyze gain-of-function phenotypes and to assess their modes of action. Here we report the misexpression phenotype for Hoxd-13 and compare it to the misexpression phenotype of Hoxd-11. Hoxd-13 misexpression in the hindlimb results in a shortening of the long bones, including the femur, the tibia, the fibula and the tarsometatarsals. Mutations in an alanine repeat region in the N-terminus of Hoxd-13 have recently been implicated in human synpolydactyly (Muragaki, Y., Mundlos, S., Upton, J. and Olsen, B. R. (1996) Science 272, 548–551). N-terminal truncations of Hoxd-13 which lack this repeat were constructed and were found to produce a similar, although slightly milder, misexpression phenotype than the full-length Hoxd-13. The stage of bone development regulated by Hox genes has not previously been examined. The changes in bone lengths caused by Hoxd-13 misexpression are late phenotypes that first become apparent during the growth phase of the bones. Analysis of tritiated thymidine uptake by the tibia and fibula demonstrates that Hox genes can pattern the limb skeleton by regulating the rates of cell division in the proliferative zone of growing cartilage. Hoxd-11, in contrast to Hoxd-13, acts both at the initial cartilage condensation phase in the foot and during the later growth phase in the lower leg. Ectopic Hoxd-13 appears to act in a dominant negative manner in regions where it is not normally expressed. We propose a model in which all Hox genes are growth promoters, regulating the expression of the same target genes, with some Hox genes being more effective promoters of growth than other Hox genes. According to this model, the overall rate of growth in a given region is the result of the combined action of all of the Hox genes expressed in that region competing for the same target genes.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 664-664
Author(s):  
Jay L. Hess ◽  
Zhaohai Yang ◽  
Haoren Wang ◽  
Ya-Xiong Chen ◽  
Thomas A. Milne ◽  
...  

Abstract Rearrangements of the mixed lineage leukemia gene MLL are associated with aggressive lymphoid and myeloid leukemias. The resulting MLL fusion proteins enforce high-level expression of HOX genes including HOX A7 and HOX A9 and the HOX cofactor MEIS1, which is pivotal for leukemogenesis. The mechanism by which this occurs and the relationship to normal MLL function is unknown. MLL and MLL fusion proteins bind with a similar distribution in hematopoietic cells at both promoters and coding sequences of target genes. Our studies suggest that a major mechanism of regulating MLL, which is expressed throughout hematopoiesis, is through modulating it’s binding to target promoters. MLL binds directly to the promoters and coding regions of HOX A7, HOX A9, and MEIS1 only in myeloblasts and not in neutrophils, indicating MLL is physically associated with genes only when they are actively transcribed. Expression of A cluster HOX loci and MEIS1 remains persistently elevated when MLL-ENL or dimerized MLL fusion proteins are expressed. Expression of either fusion protein is associated with increased binding of wild type MLL accompanied by increases in histone acetylation and histone H3 lysine 4, marks that are normally almost completely erased during myeloid differentiation. In addition MLL-ENL induces increased lysine 79 methylation. Both MLL and MLL fusion proteins interact with the tumor suppressor menin via sequences in the extreme amino terminus of MLL. In addition both proteins physically interact with RNA polymerase II, which shows abnormal pausing in the coding regions of HOX genes in Mll null cells. Genetic ablation of menin or expression of a dominant negative inhibitor of the MLL-menin interaction inhibits the growth of MLL fusion protein transformed cells. These findings suggest MLL fusion proteins act in concert with menin, MLL and other coactivators to deregulate HOX gene expression pivotal for transformation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 56-56 ◽  
Author(s):  
Andrew G. Muntean ◽  
Eric M Granowicz ◽  
Jay L. Hess

Abstract Abstract 56 Balanced chromosomal translocations of the MLL gene located on chromosome 11q23 result in the expression of a chimeric fusion proteins with enhanced transcriptional activity. The HOX genes and their co-factors, such as MEIS1 and PBX2, are critical downstream targets of MLL fusion proteins and essential for transformation. Previously we showed MLL fusion proteins are critically dependent on a direct interaction with the RNA Pol II Associated Factor complex (PAFc). PAFc is a protein complex important for the initiation, elongation and termination of transcription. It is also necessary for histone H2B K120 mono-ubiquitination through the direct recruitment of the BRE1/RAD6 E3 ubiquitin ligase complex. MLL fusion proteins make two direct contacts with the PAF1 and CTR9 subunits of the PAFc that are crucial for MLL fusion protein mediated transformation. Deletion of regions of MLL that interact with PAFc abrogates AML in mouse bone marrow transplantation assays. Here we tested the general requirement for PAFc in AML using a conditional knockout mouse model of one component of PAFc, Cdc73. These studies show that PAFc is necessary for growth of both E2A-HLF and MLL-AF9 transformed cells. Excision of Cdc73 leads to decreased expression of the MLL target genes Hoxa9 and Meis1, decreased colony formation and decreased proliferation of leukemic blasts and ultimately apoptosis. We then performed chromatin immunoprecipitation assays to assess the binding of PAFc and MLL to target loci with and without Cdc73. Excision of Cdc73 leads to a rapid decrease in association of PAFc as well as MLL fusion proteins and wild type MLL at target loci confirming that proper targeting of MLL fusion proteins requires PAFc. A decrease in H3K4me3 and H2Bub is also observed and consistent with a role of PAFc in the deposition of these epigenetic marks. We then sought to disrupt the MLL-PAFc interaction through expression of a small 40 amino acid fragment of MLL that interacts with the PAF1 subunit of PAFc. As the MLL-PAFc interaction involves interactions between MLL and both CTR9 and PAF1, it was unknown whether targeting one interaction site would be sufficient to disrupt transformation. Indeed, expression of the short fragment encompassing the pre-CxxC region of MLL acts as a dominant negative and disrupts the MLL-PAFc interaction, significantly decreasing Hox gene expression, colony formation and cell proliferation of MLL-AF9 transformed cells. Importantly, expression of the MLL fragment selectively inhibited MLL fusion mediated leukemic transformation and cell growth while the growth and proliferation of E2A-HLF cells is unaffected. Together these data show that targeting the MLL-PAFc interaction with a small MLL fragment can act as a dominant negative and selectively inhibit the growth of AML cells transformed with MLL fusion proteins. These data also suggest the MLL-PAF1 interaction surface is a promising region for therapeutic targeting. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 541-550
Author(s):  
F. Long ◽  
E. Schipani ◽  
H. Asahara ◽  
H. Kronenberg ◽  
M. Montminy

We have evaluated the importance of the CREB family of transcriptional activators for endochondral bone formation by expressing a potent dominant negative CREB inhibitor (A-CREB) in growth plate chondrocytes of transgenic mice. A-CREB transgenic mice exhibited short-limbed dwarfism and died minutes after birth, apparently due to respiratory failure from a diminished rib cage circumference. Consistent with the robust Ser133 phosphorylation and, hence, activation of CREB in chondrocytes within the proliferative zone of wild-type cartilage during development, chondrocytes in A-CREB mutant cartilage exhibited a profound decrease in proliferative index and a delay in hypertrophy. Correspondingly, the expression of certain signaling molecules in cartilage, most notably the Indian hedgehog (Ihh) receptor patched (Ptch), was lower in A-CREB expressing versus wild-type chondrocytes. CREB appears to promote Ptch expression in proliferating chondrocytes via an Ihh-independent pathway; phospho-CREB levels were comparable in cartilage from Ihh(−/−) and wild-type mice. These results demonstrate the presence of a distinct signaling pathway in developing bone that potentiates Ihh signaling and regulates chondrocyte proliferation, at least in part, via the CREB family of activators.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2799-2812 ◽  
Author(s):  
A. McCormick ◽  
N. Core ◽  
S. Kerridge ◽  
M.P. Scott

Along the anterior-posterior axis of animal embryos, the choice of cell fates, and the organization of morphogenesis, is regulated by transcription factors encoded by clustered homeotic or ‘Hox’ genes. Hox genes function in both epidermis and internal tissues by regulating the transcription of target genes in a position- and tissue-specific manner. Hox proteins can have distinct targets in different tissues; the mechanisms underlying tissue and homeotic protein specificity are unknown. Light may be shed by studying the organization of target gene enhancers. In flies, one of the target genes is teashirt (tsh), which encodes a zinc finger protein. tsh itself is a homeotic gene that controls trunk versus head development. We identified a tsh gene enhancer that is differentially activated by Hox proteins in epidermis and mesoderm. Sites where Antennapedia (Antp) and Ultrabithorax (Ubx) proteins bind in vitro were mapped within evolutionarily conserved sequences. Although Antp and Ubx bind to identical sites in vitro, Antp activates the tsh enhancer only in epidermis while Ubx activates the tsh enhancer in both epidermis and in somatic mesoderm. We show that the DNA elements driving tissue-specific transcriptional activation by Antp and Ubx are separable. Next to the homeotic protein-binding sites are extensive conserved sequences likely to control tissue activation by different homeodomain proteins. We propose that local interactions between homeotic proteins and other factors effect activation of targets in proper cell types.


1992 ◽  
Vol 12 (2) ◽  
pp. 589-597
Author(s):  
E S Dieken ◽  
R L Miesfeld

Genetic studies have suggested that transcriptional regulation of specific target genes (by either induction or repression) is the molecular basis of glucocorticoid-mediated lymphocyte apoptosis. To examine the role of transcriptional regulation more directly, we developed a complementation assay utilizing stable transfection of wild-type (wt) and mutant (nti) glucocorticoid receptor (GR) cDNA constructs into a GR-deficient S49 murine cell line (7r). Our data confirm that the level of functional GR is rate limiting for S49 apoptosis and moreover that the GR amino terminus (N terminus), which as been deleted from the nti GR, is absolutely required for complementation in this system. Surprisingly, we found that at physiological levels of receptor, expression of the nti GR in cells containing wt GR results in enhanced dexamethasone sensitivity rather than a dominant negative phenotype. One interpretation of these data is that DNA binding by wt-nti heterodimers may be functionally similar to that of wt-wt homodimers, indicating that GRE occupancy by at least one transactivation domain may be sufficient to induce the hormonal response. To determine whether acidic activating sequences such as those localized to the GR N terminus are important in the induction of lymphocyte apoptosis, we tested the activity of a chimeric receptor in which we replaced the entire GR N terminus with sequences from the herpes simplex virus VP16 protein. Our results demonstrate that 7r cells expressing VP-GR fusions are indeed steroid sensitive, strongly supporting the idea that S49 apoptosis is dependent on transcriptional regulation of specific genes which respond to acidic activating domains, implying that induction, rather than repression, may be the critical initiating event.


1991 ◽  
Vol 260 (5) ◽  
pp. H1713-H1717 ◽  
Author(s):  
U. Ikeda ◽  
M. Ikeda ◽  
T. Oohara ◽  
A. Oguchi ◽  
T. Kamitani ◽  
...  

We have investigated the effect of interleukin 6 (IL-6) on the growth of vascular smooth muscle cells (VSMC) isolated from rat aortas. Murine recombinant IL-6 significantly increased the number of VSMC and stimulated tritiated thymidine incorporation into VSMC in a dose-dependent manner. The IL-6-induced thymidine incorporation into VSMC was totally inhibited by the Ca2+ channel blocker verapamil; however, IL-6 showed no effects on the intracellular Ca2+ level ([Ca2+]i) in VSMC. Antibody against platelet-derived growth factor (PDGF) also totally inhibited the IL-6-induced thymidine uptake. PDGF caused a significant increase in the [Ca2+]i, which was totally inhibited by verapamil. IL-6 mRNA was not detected in unstimulated “quiescent” VSMC, but its expression was stimulated by exposure of VSMC to 10% fetal bovine serum. Immunohistochemical study using anti-PDGF antibody showed that IL-6 stimulated PDGF production in VSMC. These results support the premise that IL-6 is released by VSMC in an autocrine manner and promotes the growth of VSMC via induction of endogenous PDGF production.


2005 ◽  
Vol 280 (16) ◽  
pp. 16484-16498 ◽  
Author(s):  
Eduardo Martinez-Ceballos ◽  
Pierre Chambon ◽  
Lorraine J. Gudas

Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of theHoxa1gene, the most 3′ member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1-/-embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1-/-mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1-/-ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1,Postn/Osf2, and the bone sialoprotein gene orBSP), genes that are expressed in the developing brain (e.g. Nnat,Wnt3a,BDNF,RhoB, andGbx2), and genes involved in various cellular processes (e.g. M-RAS,Sox17,Cdkn2b,LamA1,Col4a1,Foxa2,Foxq1,Klf5, andIgf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1,Oct3/4,Fgf4, andBmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1-/-ES cells express high levels of various endodermal markers, includingGata4andDab2, and express much lessFgf5after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.


2010 ◽  
Vol 31 (1) ◽  
pp. 133-133
Author(s):  
Sumito Dateki ◽  
Kitaro Kosaka ◽  
Kosei Hasegawa ◽  
Hiroyuki Tanaka ◽  
Noriyuki Azuma ◽  
...  

ABSTRACT Context Although recent studies have suggested a positive role of OTX2 in pituitary as well as ocular development and function, detailed pituitary phenotypes in OTX2 mutations and OTX2 target genes for pituitary function other than HESX1 and POU1F1 remain to be determined. Objective We aimed to examine such unresolved issues. Subjects We studied 94 Japanese patients with various ocular or pituitary abnormalities. Results We identified heterozygous p.K74fsX103 in case 1, p.A72fsX86 in case 2, p.G188X in two unrelated cases (3 and 4), and a 2,860,561-bp microdeletion involving OTX2 in case 5. Clinical studies revealed isolated GH deficiency in cases 1 and 5; combined pituitary hormone deficiency in case 3; abnormal pituitary structures in cases 1, 3, and 5; and apparently normal pituitary function in cases 2 and 4, together with ocular anomalies in cases 1-5. The wild-type Orthodenticle homeobox 2 (OTX2) protein transactivated the GNRH1 promoter as well as the HESX1, POU1F1, and IRBP (interstitial retinoid-binding protein) promoters, whereas the p.K74fsX103-OTX2 and p.A72fsX86-OTX2 proteins had no transactivation functions and the p.G188X-OTX2 protein had reduced (∼50%) transactivation functions for the four promoters, with no dominant-negative effect. cDNA screening identified positive OTX2 expression in the hypothalamus. Conclusions The results imply that OTX2 mutations are associated with variable pituitary phenotype, with no genotype-phenotype correlations, and that OTX2 can transactivate GNRH1 as well as HESX1 and POU1F1.


Sign in / Sign up

Export Citation Format

Share Document