Robust balancing for rotating machines

Author(s):  
S D Garvey ◽  
M I Friswell ◽  
E J Williams ◽  
A W Lees ◽  
I D Care

The balancing of rotors divides broadly into two categories: balancing in situ and balancing in a balancing machine. In the latter case, the most common practice is to arrange balance corrections on the rotor such that the net excitations of each of the four in-plane rigid-body modes of the free rotor is zero by deploying balance corrections on two independent planes. In a small proportion of cases, the net excitations of the first pair of flexural modes are also zeroed using a third correction plane. This paper proposes that, when rotors are balanced in a balancing machine (not similar to the machine stator), substantially more utility can be gained from the balancing operation by combining a suitably weighted account of the specific balancing requirements of the machine with knowledge of the expected machine characteristics than can be achieved by ignoring this knowledge. A single cost function is established based on a numerical model of the machine. Then, depending on circumstances, either the expected value of this cost function or its worst possible value can be minimized. The methods proposed require that relatively detailed knowledge of the distribution of residual unbalance be obtained experimentally. The paper briefly discusses some practical methods for how such information might be extracted. The definition of the cost function as a matrix quadratic form provides potentially valuable information about the necessary number and the optimal location of balance planes on a given rotor, and methods for determining an optimal set of balance planes are outlined.

2019 ◽  
Vol 91 ◽  
pp. 08024
Author(s):  
Sergey Prochorov

Increase in energy efficiency of construction allows reducing costs of technical operation of parks of the equipment and increasing construction energy saving level in general. To achieve these goals, it is offered to apply modern methods of the organization and works, to use the hi-tech construction equipment, and also to form an optimum set of mechanization for construction and installation works. A criterion of optimization is the cost of work. In definition of performance data of the car at the enterprise, its energy efficiency is taken into account, the options are compared, and the optimal set of cars is formed. During the solution of the task, conclusions were formulated, showing that ecological planning and steering together with energy audit on the construction site allow more rational formation of parks of cars, improving ecological component and quality of construction works.


2015 ◽  
Vol 143 (10) ◽  
pp. 3925-3930 ◽  
Author(s):  
Benjamin Ménétrier ◽  
Thomas Auligné

Abstract The control variable transform (CVT) is a keystone of variational data assimilation. In publications using such a technique, the background term of the transformed cost function is defined as a canonical inner product of the transformed control variable with itself. However, it is shown in this paper that this practical definition of the cost function is not correct if the CVT uses a square root of the background error covariance matrix that is not square. Fortunately, it is then shown that there is a manifold of the control space for which this flaw has no impact, and that most minimizers used in practice precisely work in this manifold. It is also shown that both correct and practical transformed cost functions have the same minimum. This explains more rigorously why the CVT is working in practice. The case of a singular is finally detailed, showing that the practical cost function still reaches the best linear unbiased estimate (BLUE).


2015 ◽  
Vol 143 (9) ◽  
pp. 3804-3822 ◽  
Author(s):  
Zhijin Li ◽  
James C. McWilliams ◽  
Kayo Ide ◽  
John D. Farrara

Abstract A multiscale data assimilation (MS-DA) scheme is formulated for fine-resolution models. A decomposition of the cost function is derived for a set of distinct spatial scales. The decomposed cost function allows for the background error covariance to be estimated separately for the distinct spatial scales, and multi-decorrelation scales to be explicitly incorporated in the background error covariance. MS-DA minimizes the partitioned cost functions sequentially from large to small scales. The multi-decorrelation length scale background error covariance enhances the spreading of sparse observations and prevents fine structures in high-resolution observations from being overly smoothed. The decomposition of the cost function also provides an avenue for mitigating the effects of scale aliasing and representativeness errors that inherently exist in a multiscale system, thus further improving the effectiveness of the assimilation of high-resolution observations. A set of one-dimensional experiments is performed to examine the properties of the MS-DA scheme. Emphasis is placed on the assimilation of patchy high-resolution observations representing radar and satellite measurements, alongside sparse observations representing those from conventional in situ platforms. The results illustrate how MS-DA improves the effectiveness of the assimilation of both these types of observations simultaneously.


2011 ◽  
Vol 28 (9) ◽  
pp. 1155-1166 ◽  
Author(s):  
M. Talone ◽  
C. Gabarró ◽  
A. Camps ◽  
R. Sabia ◽  
J. Gourrion ◽  
...  

Abstract The interests of the scientific community working on the Soil Moisture and Ocean Salinity (SMOS) ocean salinity level 2 processor definition are currently focused on improving the performance of the retrieval algorithm, which is based on an iterative procedure where a cost function relating models, measurements, and auxiliary data is minimized. For this reason, most of the effort is currently focused on the analysis and the optimization of the cost function. Within this framework, this study represents a contribution to the assessment of one of the pending issues in the definition of the cost function: the optimal weight to be given to the radiometric measurements with respect to the weight given to the background geophysical terms. A whole month of brightness temperature acquisitions have been simulated by means of the SMOS-End-to-End Performance Simulator. The level 2 retrieval has been performed using the Universitat Politècnica de Catalunya (UPC) level 2 processor simulator using four different configurations, namely, the direct covariance matrices, the two cost functions currently described in the SMOS literature, and, finally, a new weight (the so-called effective number of measurement). Results show that not even the proposed weight properly drives the minimization, and that the current cost function has to be modified in order to avoid the introduction of artifacts in the retrieval procedure. The calculation of the brightness temperature misfit covariance matrices reveals the presence of very complex patterns, and the inclusion of those in the cost function strongly modifies the retrieval performance. Worse but more Gaussian results are obtained, pointing out the need for a more accurate modeling of the correlation between brightness temperature misfits, in order to ensure a proper balancing with the relative weights to be given to the geophysical terms.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


1983 ◽  
Vol 31 (1_suppl) ◽  
pp. 60-76
Author(s):  
Patricia A. Morgan

Patricia Morgan's paper describes what happens when the state intervenes in the social problem of wife-battering. Her analysis refers to the United States, but there are clear implications for other countries, including Britain. The author argues that the state, through its social problem apparatus, manages the image of the problem by a process of bureaucratization, professionalization and individualization. This serves to narrow the definition of the problem, and to depoliticize it by removing it from its class context and viewing it in terms of individual pathology rather than structure. Thus refuges were initially run by small feminist collectives which had a dual objective of providing a service and promoting among the women an understanding of their structural position in society. The need for funds forced the groups to turn to the state for financial aid. This was given, but at the cost to the refuges of losing their political aims. Many refuges became larger, much more service-orientated and more diversified in providing therapy for the batterers and dealing with other problems such as alcoholism and drug abuse. This transformed not only the refuges but also the image of the problem of wife-battering.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
Vol 11 (2) ◽  
pp. 850
Author(s):  
Dokkyun Yi ◽  
Sangmin Ji ◽  
Jieun Park

Artificial intelligence (AI) is achieved by optimizing the cost function constructed from learning data. Changing the parameters in the cost function is an AI learning process (or AI learning for convenience). If AI learning is well performed, then the value of the cost function is the global minimum. In order to obtain the well-learned AI learning, the parameter should be no change in the value of the cost function at the global minimum. One useful optimization method is the momentum method; however, the momentum method has difficulty stopping the parameter when the value of the cost function satisfies the global minimum (non-stop problem). The proposed method is based on the momentum method. In order to solve the non-stop problem of the momentum method, we use the value of the cost function to our method. Therefore, as the learning method processes, the mechanism in our method reduces the amount of change in the parameter by the effect of the value of the cost function. We verified the method through proof of convergence and numerical experiments with existing methods to ensure that the learning works well.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Chung Yiin Wong ◽  
Kunlanan Kiatkittipong ◽  
Worapon Kiatkittipong ◽  
Seteno K. O. Ntwampe ◽  
Man Kee Lam ◽  
...  

Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.


Sign in / Sign up

Export Citation Format

Share Document