Paper 3: Turbo-Charged Diesel Engines in Production

Author(s):  
G. E. Soule

This paper describes some of the practical problems encountered and the resolutions applied during the design and development of a turbo-charged derivative of a production engine. Some further problems are described which were met when the prototype designs were manufactured in the production area. A very brief summary of the reasons for turbo-charging, and the performance results, are also included. The base engine was a 6-litre direct injection dry-linered diesel engine with a rated speed of 2800 rev/min in its naturally aspirated form, used for commercial vehicle propulsion plus industrial and marine purposes.

Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


Author(s):  
Naeim A. Henein ◽  
Tamer Badawy ◽  
Nilesh Rai ◽  
Walter Bryzik

Advanced electronically controlled diesel engines require a feedback signal to the ECU to adjust different operating parameters and meet demands for power, better fuel economy and low emissions. Different types of in-cylinder combustion sensors are being considered to produce this signal. This paper presents results of an experimental investigation on the characteristics of the ion current in an automotive diesel engine equipped with a common rail injection system. The engine is a 1.9 L, 4-cylinder, direct injection diesel engine. Experiments covered different engine loads and injection pressures. The relationships between the ion current, combustion parameters and engine out NO emissions and opacity are presented. The analysis of the experimental data identified possible sources of the ion current produced in diesel engines.


2019 ◽  
Vol 1 (2) ◽  
pp. 35-44
Author(s):  
Ramesh C ◽  
Murugesan A ◽  
Vijayakumar C

Diesel engines are widely used for their low fuel consumption and better efficiency. Fuel conservation, efficiency and emission control are always the investigation points in the view of researchers in developing energy system. India to search for a suitable environmental friendly alternative to diesel fuel. The regulated emissions from diesel engines are carbon monoxide (CO), Hydrocarbons (HC), NOx and Particulate matter. It creates cancer, lungs problems, headaches and physical and mental problems of human. This paper focuses on the substitution of fossil fuel diesel with renewable alternatives fuel such as Biodiesel. Biodiesel is much clear than fossil diesel fuel and it can be used in any diesel engine without major modification. The experiment was conducted in a single-cylinder four-stroke water-cooled 3.4 kW direct injection compression ignition engine fueled with non-edible Pungamia oil biodiesel blends. The experimental results proved that up to 40% of Pungamia oil biodiesel blends give better results compared to diesel fuel. The AVL 444 di-gas analyzer and AVL 437 smoke meter are used to measure the exhaust emissions from the engine. The observation of results, non-edible Pongamia biodiesel blended fuels brake thermal efficiency (3.59%) is improved and harmful emissions like CO, unburned HC, CO2, Particulate matter, soot particles, NOx and smoke levels are 29.67%, 26.65%, 33.47%, 39.57%, +/- 3.5 and 41.03% is decreased respectively compared to the diesel fuel. This is due to biodiesel contains the inbuilt oxygen content, ignition quality, carbon burns fully, less sulphur content, no aromatics, complete CO2 cycle.


Author(s):  
Gong Chen

The influence of inlet liquid fuel temperature on direct-injection diesel engines can be noticeable and significant. The work in this paper investigates the effects of inlet fuel temperature on fuel-injection in-cylinder combustion, and output performance and emissions of medium-speed diesel engines. An enhanced understanding and simplified modeling of the variations in the main fuel-injection parameters affected by inlet fuel temperature are developed. The study indicates that the main injection parameters affected include the injection timing at the injector end relative to the injection-pump actuation timing, the fuel-injection rate, the fuel-injection duration, and the injection spray atomization. The primary fuel temperature effects on the injection parameters are from the fuel bulk modulus of elasticity and the density with the fuel viscosity less significant as the injector-nozzle flow is usually in a turbulent region. The developed models are able to predict the changes in the injection parameters versus the inlet fuel temperature. As the inlet fuel temperature increases, the nozzle fuel-injection-start timing is predicted to be relatively retarded, the injection rate is reduced, and the needle-lift duration is prolonged from the baseline. The variation trends of the engine outputs and emissions versus fuel temperature are analyzed by considering its consequent effect on in-cylinder combustion processes. It is predicted that raising fuel temperature would result in an increase in each of CO, HC, PM, and smoke emissions, and in a decrease in NOx, and may adversely affect the fuel efficiency for a general type of diesel engine at a full-load condition. The experimental results of the outputs and emissions from testing a medium-speed four-stroke diesel engine agreed with the trends analytically predicted. The understanding and models can be applied to compression-ignition direct-injection liquid fuel engines in general.


2016 ◽  
Vol 822 ◽  
pp. 243-251
Author(s):  
Vladimir Mardarescu ◽  
Nicolae Ispas ◽  
Mircea Nastasoiu

Small diesel engines with direct injection air cooled a big problem is heat dissipation. Based on bench made ​​with a 295 cc diesel engine with direct injection, air cooled, I set the heat flows through the cylinder head, piston and cylinder. These data are needed to study the possibility of operating at maximum power, knowing that mechanical stresses of thermal origin are the most dangerous. The data obtained in this work will be used in the analysis of temperature and stress fields.


Author(s):  
N. A. Henein ◽  
I. P. Singh ◽  
L. Zhong ◽  
Y. Poonawala ◽  
J. Singh ◽  
...  

This paper introduces a phenomenological model for the fuel distribution, combustion, and emissions formation in the small bore, high speed direct injection diesel engine. A differentiation is made between the conditions in large bore and small bore diesel engines, particularly regarding the fuel impingement on the walls and the swirl and squish gas flow components. The model considers the fuel injected prior to the development of the flame, fuel injected in the flame, fuel deposited on the walls and the last part of the fuel delivered at the end of the injection process. The model is based on experimental results obtained in a single-cylinder, 4-valve, direct-injection, four-stroke-cycle, water-cooled, diesel engine equipped with a common rail fuel injection system. The engine is supercharged with heated shop air, and the exhaust back pressure is adjusted to simulate actual turbo-charged diesel engine conditions. The experiments covered a wide range of injection pressures, EGR rates, injection timings and swirl ratios. Correlations and 2-D maps are developed to show the effect of combinations of the above parameters on engine out emissions. Emphasis is made on the nitric oxide and soot measured in Bosch Smoke Units (BSU).


Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 363-369 ◽  
Author(s):  
ADNAN BERBER

In this work, the methanol is added to the diesel fuel in the volumetric proportions of 5%-%10-%15 to diminish negative environmental impacts of diesel engines. The diesel-methanol blends in the various proportions are tested in a single-cylinder direct-injection diesel engine. According to the test results, the addition of methanol to the diesel fuel causes a maximum decrease of 13.07 % in the engine torque, and a maximum decrease of 12.54 % in the specific fuel consumption. On the other hand, the exhaust emission results show that the values of CO and CO2 decrease 38.4 % and 5.04%. However, the increase of 3.66% in the exhaust gas temperature causes the increase of 17.1% in the NOx emission. Also, a significant decrease of 39.37% in the smoke opacity is observed compared to that of the diesel fuel. Although the addition of methanol to diesel fuel causes a slightly decrease in the engine performance, the diesel-methanol blends have a reasonable and considerable positive effect on environmental concerns of diesel engines.


2005 ◽  
Vol 128 (2) ◽  
pp. 388-396 ◽  
Author(s):  
Dohoy Jung ◽  
Dennis N. Assanis

In this study we report the development and validation of phenomenological models for predicting direct injection (DI) diesel engine emissions, including nitric oxide (NO), soot, and unburned hydrocarbons (HC), using a full engine cycle simulation. The cycle simulation developed earlier by the authors (D. Jung and D. N. Assanis, 2001, SAE Transactions: Journal of Engines, 2001-01-1246) features a quasidimensional, multizone, spray combustion model to account for transient spray evolution, fuel–air mixing, ignition and combustion. The Zeldovich mechanism is used for predicting NO emissions. Soot formation and oxidation is calculated with a semiempirical, two-rate equation model. Unburned HC emissions models account for three major HC sources in DI diesel engines: (1) leaned-out fuel during the ignition delay, (2) fuel yielded by the sac volume and nozzle hole, and (3) overpenetrated fuel. The emissions models have been validated against experimental data obtained from representative heavy-duty DI diesel engines. It is shown that the models can predict the emissions with reasonable accuracy. Following validation, the usefulness of the cycle simulation as a practical design tool is demonstrated with a case study of the effect of the discharge coefficient of the injector nozzle on pollutant emissions.


2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


Sign in / Sign up

Export Citation Format

Share Document