scholarly journals Αξιοποίηση μοριακών μεθόδων στη βελτίωση ανθεκτικότητας των εσπεριδοειδών στο Citrus exocortis viroid, στον έλεγχο της υγείας των εσπεριδοειδών υπό εξυγίανση και στη μελέτη διαφορικής έκφρασης γονιδίων ποικιλιών λεμονιάς

2016 ◽  
Author(s):  
Ευαγγελία Κουτσιουμάρη

Citrus, commercially grown in a wide range of soil and climatic conditions, aresubjected to substantial biotic and abiotic stresses which limit the production and insome cases, pose restrictions on the use of specific rootstocks and varieties. Citrusexocortis viroid (CEVd) causes severe symptoms in trees grafted on Poncirus trifoliata(L.) Raf. and its hybrids which, due to their tolerance to Citrus tristeza virus, arerecently employed for the replacement of sour orange (Citrus aurantium L.). The mosteffective method of controlling both biotic and abiotic stresses in plants refers to the useof resistant varieties. Nevertheless, the lack of natural genetic sources of resistance tomost severe diseases, along with the lack of basic knowledge on the inheritance patternof main agronomic traits, render necessary the use of genetic engineering in citrusbreeding. To this direction, the exploitation of genetic engineering requires theexistence of an efficient tissue culture protocol for each citrus species, to ensureregeneration of sufficient number of transformed plants. In this framework, the presentstudy initially focused on the determination of the most suitable genetic transformationprotocol for each citrus species: P. trifoliata, Carrizo citrange (C. sinensis × P.trifoliata), Citrumelo 1452 (P. trifoliata × C. paradisi), sour orange and “Maglini”lemon (Citrus limon (L.) Burm. f.) (Chapter 1).In recent years, one of the most efficient methods for the generation of resistanceagainst viruses and viroids refers to the exploitation of RNA silencing (RNAi). Towardsthis direction, and in view of the recalcitrant nature of citrus species which renderstransformation and regeneration particularly difficult, aim of this study was thedevelopment of transgenic CEVd resistance in the model plant Nicotiana benthamianawhich is a non-host of CEVd. In this line, the CEVd-inoculation of N. benthamianaplants was pursued by two different approaches: a) agroinfiltration and b) stable genetictransformation, using a plasmid harboring the dimeric CEVd molecule (Chapter 2). Theresults indicate a low rate of CEVd replication in the agro-infiltrated plants, in contrastto transgenic plants which were capable of CEVd replication. The latter though, werecharacterized by reduced growth and seed production compared to wild-type plants. Towards investigating the capability of various segments of the CEVd genome ininducing silencing of its genome and subsequent suppression of its replication,transgenic plants replicating the viroid were inoculated with two different selfcomplementaryhairpin RNA fragments from the CEVd genome (Chapter 3). Theresults provided strong evidence that both CEVd regions are capable of triggering RNAsilencing, thus causing a reduction to the viroid replication rate. These results were alsoconfirmed by transient expression experiments in wild-type N. benthamiana plants,where viroid presence caused reduced accumulation of the selected CEVd fragments.As a means to investigate whether the observed resistant phenotype of the modelplant N. benthamiana can be achieved in citrus species, which consist the natural viroidhosts, the introgression of two selected segments of the CEVd genome was pursued, bygenetic transformation, in various citrus genotypes (Chapter 4). To this purpose, genetictransformation was performed in plants of P. trifoliata, Carrizo citrange and Citrumelo1452. Parallel aim was the generation of transgenic resistance against citrus psorosisdisease, through the introgression of the viral coat protein of Citrus psorosis virus(CPsV) in sour orange and “Maglini” lemon (Chapter 4).The most important method to control citrus diseases is the use of healthy certifiedpropagation material. An effective method for plant sanitation is in vitro micrograftingof apical meristems. The study of in vitro micrografted lemon, orange and mandarinplants verified the absence of the most important viruses and viroids for Greekcitriculture, indicating that the necessary expertise for sanitation of the precious citruspropagation material exists in our country (Chapter 5).Finally, this dissertation included the study of certain sequences which areoverexpressed in the Greek lemon ”Adamopoulou” compared to the Portuguese”Lisbon” (Chapter 6). The difference between the two varieties is that ”Adamopoulou”is tolerant to mal secco and cold compared to “Lisbon”. Several of the sequences understudy presented homology with proteins directly or indirectly involved in the defensemechanisms of plants against biotic and abiotic stresses, with the difference between thetwo varieties in expression of seven genes being at varying levels.

2011 ◽  
Vol 286 (18) ◽  
pp. 16355-16362 ◽  
Author(s):  
Oleg Y. Dmitriev ◽  
Ashima Bhattacharjee ◽  
Sergiy Nokhrin ◽  
Eva-Maria E. Uhlemann ◽  
Svetlana Lutsenko

Wilson disease (WD) is a disorder of copper metabolism caused by mutations in the Cu-transporting ATPase ATP7B. WD is characterized by significant phenotypic variability, the molecular basis of which is poorly understood. The E1064A mutation in the N-domain of ATP7B was previously shown to disrupt ATP binding. We have now determined, by NMR, the structure of the N-domain containing this mutation and compared properties of E1064A and H1069Q, another mutant with impaired ATP binding. The E1064A mutation does not change the overall fold of the N-domain. However, the position of the α1,α2-helical hairpin (α-HH) that houses Glu1064 and His1069 is altered. The α-HH movement produces a more open structure compared with the wild-type ATP-bound form and misaligns ATP coordinating residues, thus explaining complete loss of ATP binding. In the cell, neither the stability nor targeting of ATP7B-E1064A to the trans-Golgi network differs significantly from the wild type. This is in a contrast to the H1069Q mutation within the same α-HH, which greatly destabilizes protein both in vitro and in cells. The difference between two mutants can be linked to a lower stability of the α-HH in the H1069Q variant at the physiological temperature. We conclude that the structural stability of the N-domain rather than the loss of ATP binding plays a defining role in the ability of ATP7B to reach the trans-Golgi network, thus contributing to phenotypic variability in WD.


2000 ◽  
Vol 279 (1) ◽  
pp. C188-C194 ◽  
Author(s):  
Ning Wang ◽  
Dimitrije Stamenović

It has been shown previously that intermediate filament (IF) gels in vitro exhibit stiffening at high-applied stress, and it was suggested that this stiffening property of IFs might be important for maintaining cell integrity at large deformations (Janmey PA, Evtenever V, Traub P, and Schliwa M, J Cell Biol 113: 155–160, 1991). In this study, the contribution of IFs to cell mechanical behavior was investigated by measuring cell stiffness in response to applied stress in adherent wild-type and vimentin-deficient fibroblasts using magnetic twisting cytometry. It was found that vimentin-deficient cells were less stiff and exhibited less stiffening than wild-type cells, except at the lowest applied stress (10 dyn/cm2) where the difference in the stiffness was not significant. Similar results were obtained from measurements on wild-type fibroblasts and endothelial cells after vimentin IFs were disrupted by acrylamide. If, however, cells were plated over an extended period of time (16 h), they exhibited a significantly greater stiffness before than after acrylamide, even at the lowest applied stress. A possible reason could be that the initially slack IFs became fully extended due to a high degree of cell spreading and thus contributed to the transmission of mechanical stress across the cell. Taken together, these findings were consistent with the notion that IFs play important roles in the mechanical properties of the cell during large deformation. The experimental data also showed that depleting or disrupting IFs reduced, but did not entirely abolish, cell stiffening. This residual stiffening might be attributed to the effect of geometrical realignment of cytoskeletal filaments in the direction of applied load. It was also found that vimentin-deficient cells exhibited a slower rate of proliferation and DNA synthesis than wild-type cells. This could be a direct consequence of the absence of the intracellular IFs that may be necessary for efficient mediation of mechanical signals within the cell. Taken together, results of this study suggest that IFs play important roles in the mechanical properties of cells and in cell growth.


2009 ◽  
Vol 75 (18) ◽  
pp. 5779-5786 ◽  
Author(s):  
Xianhua Yin ◽  
Roger Wheatcroft ◽  
James R. Chambers ◽  
Bianfang Liu ◽  
Jing Zhu ◽  
...  

ABSTRACT O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Ter), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Ter gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Ter-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% ± 21.2% versus 40.1% ± 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Ter, Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium.


2019 ◽  
Author(s):  
Adel Hadj Brahim ◽  
Mouna Jlidi ◽  
Lobna Daoud ◽  
Manel Ben-Ali ◽  
Asmahen Akremi ◽  
...  

Abstract Background The use of bioinoculants based on plant growth-promoting bacteria (PGPB) to promote plant growth under biotic and abiotic stresses is in full expansion. To our knowledge much work has not been, thus far, done on seed-biopriming of durum wheat for tolerance to biotic and abiotic stresses. In the present work, we report detailed account of the effectiveness a potent bacterial strain with proven plant growth-promoting ability and antimicrobial activity. The isolate was selected following screening of several bacterial strains isolated from halophytes that grow in a coastal saline soil in Tunisia for their role in enhancing durum wheat tolerance to both salinity stress and head blight disease.Results Accordingly, Bacillus strains MA9, MA14, MA17 and MA19 were found to have PGPB characteristics as they produced indole-3-acetic acid, siderophores and lytic enzymes, fixed free atmospheric nitrogen, and solubilized inorganic phosphate, in vitro . The in vivo study that involved in planta inoculation assays under control (25 mM NaCl) and stress (125 mM NaCl) conditions indicated that all PGPB strains significantly ( P < 0.05) increased the total plant length, dry weight, root area, seed weight, nitrogen, protein and total mineral content. On the other hand, strain MA17 reduced Fusarium Head Blight (FHB) disease incidence in wheat explants by 64.5%, showing that the strain has antifungal activity as was also displayed by in vitro inhibition study.Conclusions Both in vitro and in vivo studies showed that MA9, MA14 MA9, MA14, MA17 and MA19 strains were able to play the PGPB role. Yet, biopriming with Bacillus strain MA17 offered the highest bioprotection against FHB, plant growth promotion, and salinity tolerance. Hence, the MA17 strain should further be evaluated under field condition and formulated for commercial production. Besides, the strain could further be evaluated for its potential role in bioprotection and growth promotion of other crop plants. We believe, the strain has potential to significantly contribute to wheat production in the arid and semi-arid region, especially the salt affected Middle Eastern Region, besides its potential role in improving wheat production under biotic and abiotic stresses in other parts of the world.


2004 ◽  
Vol 48 (10) ◽  
pp. 3782-3788 ◽  
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Shin-nosuke Hashikawa ◽  
Keizo Torii ◽  
Tadao Hasegawa ◽  
...  

ABSTRACT Glycine is the simplest amino acid and is used as a metabolic product in some bacteria. However, an excess of glycine inhibits the growth of many bacteria, and it is used as a nonspecific antiseptic agent due to its low level of toxicity in animals. The effect of glycine on Helicobacter pylori is not precisely known. The present study was conducted to investigate (i) the effect of glycine on clarithromycin (CLR)-resistant and -susceptible strains of H. pylori, (ii) the effect of glycine in combination with amoxicillin (AMX), and (iii) the postantibiotic effect (PAE). The MIC at which 90% of strains are inhibited for glycine was almost 2.5 mg/ml for 31 strains of H. pylori, including CLR-resistant strains. We constructed isogenic CLR-resistant mutant strains by natural transformation and investigated the difference between clinical wild-type strains and isogenic mutants. There were no differences in the MICs between CLR-resistant and -susceptible strains or between clinical wild-type and mutant strains. The combination of AMX and glycine showed synergistic activity, with the minimum bactericidal concentration of AMX with glycine decreasing to 1/10 that of AMX alone. Glycine showed no PAE against H. pylori. These results suggest that glycine may be a useful antimicrobial agent against H. pylori not only alone but also in combination with antibacterial drugs for the treatment of H. pylori-associated diseases. Glycine may represent a component of a new type of eradication therapy for CLR-resistant H. pylori.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ximena Alvarez-Gerding ◽  
Rowena Cortés-Bullemore ◽  
Consuelo Medina ◽  
Jesús L. Romero-Romero ◽  
Claudio Inostroza-Blancheteau ◽  
...  

Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyIandPgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species.


2006 ◽  
Vol 188 (13) ◽  
pp. 4620-4626 ◽  
Author(s):  
Asiya A. Gusa ◽  
Jinxin Gao ◽  
Virginia Stringer ◽  
Gordon Churchward ◽  
June R. Scott

ABSTRACT The group A streptococcus (GAS), Streptococcus pyogenes, is an important human pathogen that causes infections ranging in severity from self-limiting pharyngitis to severe invasive diseases that are associated with significant morbidity and mortality. The pathogenic effects of GAS are mediated by the expression of virulence factors, one of which is the hyaluronic acid capsule (encoded by genes in the has operon). The expression of these virulence factors is controlled by the CovR/S (CsrR/S) two-component regulatory system of GAS which regulates, directly or indirectly, the expression of about 15% of the genome. CovR is a member of the OmpR/PhoB family of transcriptional regulators. Here we show that phosphorylation by acetyl phosphate results in dimerization of CovR. Dimerization was not observed using a D53A mutant of CovR, indicating that D53 is the site of phosphorylation in CovR. Phosphorylation stimulated binding of CovR to a DNA fragment containing the promoter of the has operon (Phas) approximately twofold. Binding of CovR D53A mutant protein to Phas was indistinguishable from the binding of wild-type unphosphorylated CovR. In vitro transcription, using purified GAS RNA polymerase, showed that wild-type CovR repressed transcription, and repression was stimulated more than sixfold by phosphorylation. In the presence of RNA polymerase, binding at Phas of phosphorylated, but not unphosphorylated, CovR was stimulated about fourfold, which accounts for the difference in the effect of phosphorylation on repression versus DNA binding. Thus, regulation of Phas by CovR is direct, and the degree of repression of Phas is controlled by the phosphorylation of CovR.


2021 ◽  
Vol 22 (17) ◽  
pp. 9175
Author(s):  
Asma Ayaz ◽  
Haodong Huang ◽  
Minglü Zheng ◽  
Wajid Zaman ◽  
Donghai Li ◽  
...  

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 620f-621 ◽  
Author(s):  
Wendy J. Wagoner ◽  
Jill A. Kellogg ◽  
Richard K. Bestwick ◽  
James A Stamp

Broccoli and cauliflower are among the most regeneratively intractable genotypes found in the brassicaceae. To develop a method for transfer of the gene encoding S-adenosylmethionine hydrolase (SAMase) into inbred broccoli and cauliflower germplasm, we investigated the morphogenic competence and Agrobacterium susceptibility of a wide range of tissues of varied source. Appropriately controlled expression of the SAMase gene should, theoretically, reduce the plant's capacity for ethylene biosynthesis and extend the post harvest shelf life of the flower head. Through examination of the in vitro response of a wide range of tissues we identified procedures which support caulogenesis from 100% of explants, each producing more than 30 shoots which readily convert to plantlets. Studies with several wild type and disarmed Agrobacterium strains, and utilization of the binary vector system and appropriate marker and reporter genes, led to the identification of methods for high frequency T-DNA transfer to explant tissues and the flow frequency of transgenic plants containing SAMase gene.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 344 ◽  
Author(s):  
Ahmad Ali ◽  
Mehran Khan ◽  
Rahat Sharif ◽  
Muhammad Mujtaba ◽  
San-Ji Gao

Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world’s sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.


Sign in / Sign up

Export Citation Format

Share Document