scholarly journals MECHANICAL, CORROSION AND WEAR BEHAVIOUR OF STEEL CHIPS AND GRAPHITE REINFORCED Zn-27Al ALLOY BASED COMPOSITES

2017 ◽  
Vol 23 (2) ◽  
pp. 171 ◽  
Author(s):  
Kenneth Kanayo Alaneme ◽  
Oluwadamilola Abigail Ajibuwa ◽  
Ifedolapo Elizabeth Kolawole ◽  
Adetomilola Victoria Fajemisin

<p class="AMSmaintext"><span lang="EN-GB">The prospect of enhancing mechanical, corrosion and wear properties of Zn27Al alloy based composites reinforced with steel machining chips by graphite addition was the focus of this investigation. Double stir casting was used to produce Zn27Al alloy based composites with 7 wt.% reinforcement but with varied compositions containing 1, 2, and 3 wt.% graphite, steel chips making up the balance. Microstructural analysis, mechanical, corrosion and wear tests were used to characterize the composites. The results show that the hardness of the composites decreases slightly with increase in graphite content in the reinforced composites. The tensile strength and fracture toughness of the composite only showed improvement with the addition of 3 wt.% graphite in the hybrid mix (steel chips and graphite) compared with the use of lower graphite content in the mix and steel chips only. The percent elongation did not show dependency on the composition of the reinforcement phase and was basically within the range 6.0 - 6.8 %. The fracture surfaces of all the composites were essentially rough, a preponderant feature of ductile fracture mode. The wear index of the composites was generally low indicating good wear resistance. However, despite the seeming self-lubricating advantage of graphite, the wear resistance of the composite reinforced with only steel chips was relatively better than that of the hybrid graphite and steel chips reinforced composite compositions. Finally, the steel chips and graphite reinforced Zn-27Al alloy based composites were generally more corrosion resistant in 3.5% NaCl solution compared with the unreinforced Zn-27Al alloy.</span></p>

2011 ◽  
Vol 462-463 ◽  
pp. 307-312 ◽  
Author(s):  
Mahamad Noor Wahab ◽  
Mariyam Jameelah Ghazali ◽  
Abdul Razak Daud

The effect of AlN addition in Al-Si alloy composites on the mechanical properties and dry wear behaviour were studied using pre-selected parameter conditions. In this work, high purity of AlN powders with different weight percentage of 5, 7 and 10 were used as reinforced materials for the composites. Morphology of the reinforced composite indicated that both silicon grains and inter-metallic compounds were surrounded by the AlN particles. The presence of AlN in the Al-Si alloy showed a significant improvement in tensile properties in which 7wt% of AlN addition increased up to 25% compared to those of without any reinforcements. Fracture morphologies with small dimples, tear ridges and necking features indicated that ductile fractures had occurred on the Al-Si composites. At 25N load, alloys with 5wt% of AlN exhibited high wear resistances whereas at 70N, alloys with 10wt% of AlN showed a great improvement in wear resistance. SEM investigation also revealed that the presence of wear was also marked with prominent grooves, craters and scoring marks. Overall, alloys with 7wt% AlN addition possessed great improvement in hardness, tensile and wear resistance properties.


Alloy Digest ◽  
2003 ◽  
Vol 52 (9) ◽  

Abstract Crucible CPM S30V is a martensitic stainless steel designed with a combination of toughness, wear resistance, and corrosion resistance equal to or better than 440C. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion and wear resistance as well as heat treating and machining. Filing Code: SS-891. Producer or source: Crucible Service Centers.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


2008 ◽  
Vol 368-372 ◽  
pp. 744-747
Author(s):  
Xiao Ping Liang ◽  
Shao Bo Xin ◽  
Xiao Hui Wang ◽  
Zheng Fang Yang

The wear properties of ADZ (alumina dispersed in Y-TZP) and MDZ (mullite dispersed in Y-TZP) were investigated by using a ring-on-block tribometer. The results showed that for Y-TZP ceramic, the addition of alumina phase (with 10-20% in mass fraction) leads to an improved wear resistance. With the increase of the normal load, the wear rates of ADZ ceramics increase. Under low and medium normal load (100N and 300N), the wear resistance is controlled by the hardness of ceramics, and under high normal load (500N) the fracture toughness is obviously contributed to the wear resistance of the ceramics. For MDZ ceramic, the wear resistance of 15MDZ (15wt% mullite dispersed in Y-TZP) is better than that of 20 MDZ (20wt% mullite) under the normal load from 100 N to 500 N. The mechanical properties of 15MDZ are worse than that of Y-TZP ceramic, but the wear resistance is enhanced due to the action of “needle roller bearing” of the fractured rod-like mullite particles.


2011 ◽  
Vol 326 ◽  
pp. 144-150
Author(s):  
A. Mateen ◽  
Fazal Ahmad Khalid ◽  
T.I. Khan ◽  
G.C. Saha

Tungsten carbide cobalt coating has been extensively used for cutting and mining tools, aerospace, automotive and other wear resistance applications. These coatings not only have superior mechanical properties like high hardness, toughness and compressive strength but have also excellent controllable tribological properties. In this paper a comparison of wear properties and structural phases has been presented to consider for tribological applications. It is found that nanocrystalline duplex coatings have shown much superior properties as compared to the microcrystalline coatings. Evidence of clusters of WC particles was found in microcrystalline coating as compared to homogeneous dense coating structure observed in the nanocrystalline coating. These results are discussed to assess their suitability for super hard wear resistance applications.


2017 ◽  
Vol 13 (3) ◽  
pp. 32-36
Author(s):  
S. Rajesh ◽  
C. Velmurugan

Metal matrix composite (MMC) focuses primarily on improved specific strength, high temperature and wear resistance application. Aluminum matrix reinforced with titanium carbide and molybdenum disulfide has good potential and also self-lubrication. The main challenge is to produce this composite in a cost effective way to meet the above requirements. In this study Al–TiC-MoS2 castings with different volume fraction of TiC and MoS2 were produced in an argon atmosphere by an enhanced stir casting method. Hardness of the composite has increased with higher % of TiC addition. At that same time self-lubrication of composite has occur in the effort of MoS2. Dry sliding wear behavior of AMC was analyses with the help of a pin on disc wear and friction monitor. The present analyses reveal the improved hardness  as well as wear resistance.


2014 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Muhamad Hafizuddin Mohamad Basir ◽  
Bulan Abdullah ◽  
Siti Khadijah Alias

This research investigates and analyzes wear properties of 316 stainless steel before and after applying paste boronizing process and to investigate the effect of shot blasting process in enhancing boron dispersion into the steel. In order to enhance the boron dispersion into 316 stainless steel, surface deformation method by shot blasting process was deployed. Boronizing treatment was conducted using paste medium for 8 hours under two different temperatures which were 8500C and 9500C. Wear behaviour was evaluated using pin-on-disc test for abrasion properties. The analysis on microstructure, X-ray Diffraction (XRD) and density were also carried out before and after applying boronizing treatment. Boronizing process that had been carried out on 316 stainless steel increases the wear resistance of the steel compared to the unboronized 316 stainless steel. The effect of boronizing treatment together with the shot blasting process give a greater impact in increasing the wear resistance of 316 stainless steel. This is mainly because shot blasted samples initiated surface deformation that helped more boron dispersion due to dislocation of atom on the deformed surface. Increasing the boronizing temperature also increases the wear resistance of 316 stainless steel. In industrial application, the usage of the components that have been fabricated using the improved 316 stainless steel can be maximized because repair and replacement of the components can be reduced as a result of improved wear resistance of the 316 stainless steel.


2011 ◽  
Vol 66-68 ◽  
pp. 1500-1504 ◽  
Author(s):  
Ming Wen ◽  
Cui'e Wen ◽  
Peter D. Hodgson ◽  
Yun Cang Li

A nanocrystalline (NC) layer with the thickness of 30 µm was produced on pure titanium surface by surface mechanical attrition treatment (SMAT). Microstructure observation indicated that the grain size increases with depth from the treated surface. The friction coefficient decreases and the wear resistance increases with the SMAT sample as compared to its coarse-grained counterpart. The improvement of the wear properties could be attributed to the higher hardness of SMAT sample.


2015 ◽  
Vol 65 (4) ◽  
pp. 330 ◽  
Author(s):  
Shubhranshu Bansal ◽  
J. S. Saini

<p>Al359 alloy was reinforced with Silicon Carbide and Silicon Carbide/Graphite particles using stir casting process. Thereafter their mechanical and wear properties were investigated. It was found that the hardness of the Al359-Silicon Carbide composite is better than Al359-Silicon Carbide-Graphite composite. The Silicon Carbide/Graphite reinforced composite exhibits a superior ultimate tensile strength against Silicon Carbide reinforced composite. The wear test was conducted at different loading, sliding velocities and sliding distances conditions. Results showed that the wear resistance of Al359 alloy increased with the reinforcement of Silicon Carbide/Graphite material for higher loading, sliding velocities and sliding distance conditions. SEM images of the worn surface of the pin were examined to study their wear mechanism.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 330-338, DOI: http://dx.doi.org/10.14429/dsj.65.8676</strong></p>


Sign in / Sign up

Export Citation Format

Share Document