scholarly journals Maternal precarity and HPA axis functioning shape infant gut microbiota and HPA axis development in humans

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251782
Author(s):  
Johanna R. Jahnke ◽  
Jeffrey Roach ◽  
M. Andrea Azcarate-Peril ◽  
Amanda L. Thompson

Background Early life exposure to adverse environments, and maternal stress in particular, has been shown to increase risk for metabolic diseases and neurobehavioral disorders. While many studies have examined the hypothalamic-pituitary-adrenal axis (HPA axis) as the primary mechanism behind these relationships, emerging research on the brain-gut axis suggests that the microbiome may play a role. In this study, we tested the relationships among maternal precarity and HPA axis dysregulation during the peripartum period, infant gut microbiome composition, and infant HPA axis functioning. Methods Data come from 25 mother-infant dyads in the Galápagos, Ecuador. Women completed surveys on precarity measures (food insecurity, low social support, depression, and stress) and gave salivary cortisol samples during and after pregnancy. Infant salivary cortisol and stool were collected in the postpartum. Statistical significance of differences in microbial diversity and relative abundance were assessed with respect to adjusted linear regression models. Results Maternal precarity was associated with lower diversity and higher relative abundance of Enterobacteriaceae and Streptococcaceae and a lower relative abundance of Bifidobacterium and Lachnospiraceae. These patterns of colonization for Enterobacteriaceae and Bifidobacterium mirrored those found in infants with HPA axis dysregulation. Maternal HPA axis dysregulation during pregnancy was also associated with a greater relative abundance of Veillonella. Conclusions Overall, exposures to precarity and HPA axis dysregulation were associated with an increase in groups that include potentially pathogenic bacteria, including Enterobacteriaceae, Streptococcaceae, and Veillonella, and a decrease in potentially protective bacteria, including Bifidobacterium and Lachnospiraceae, as well as a decrease in overall diversity.

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 577 ◽  
Author(s):  
Agata Józefiak ◽  
Abdelbasset Benzertiha ◽  
Bartosz Kierończyk ◽  
Anna Łukomska ◽  
Izabela Wesołowska ◽  
...  

Gastrointestinal microbiota play an important role in regulating the metabolic processes of animals and humans. A properly balanced cecal microbiota modulates growth parameters and the risk of infections. The study examined the effect of the addition of 0.2% and 0.3% of Tenebrio molitor and Zophobas morio on cecal microbiome of broilers. The material was the cecum digesta. The obtained DNA was analyzed using 16S rRNA next generation sequencing. The results of the study show that the addition of a relatively small amount of Z. morio and T. molitor modulates the broiler cecum microbiome composition. The most positive effect on cecal microbiota was recorded in the 0.2% Z. morio diet. A significant increase in the relative amount of genus Lactobacillus, represented by the species Lactobacillus agilis and the amount of bacteria in the Clostridia class, was observed. Moreover, the addition of 0.2% ZM resulted in a significant increase of relative abundance of the family Bifidobacteriaceae with the highest relative abundance of genus Bifidobacterium pseudolongum. The obtained results indicate that the addition of a relatively small amount of insect meal in broiler diet stimulates colonization by probiotic and commensal bacteria, which may act as barriers against infection by pathogenic bacteria.


2019 ◽  
Vol 107 ◽  
pp. 50
Author(s):  
James L. Abelson ◽  
Brisa Sanchez ◽  
Xingyu Zhang ◽  
Israel Liberzon ◽  
Hedieh Briggs ◽  
...  

2021 ◽  
Author(s):  
Laura Ilen ◽  
Clémence Mathilde Feller ◽  
Stephan Eliez ◽  
Eva Micol ◽  
Carmen Sandi ◽  
...  

Background 22q11.2 deletion syndrome (22q11DS) is a neurogenetic condition associated to a high risk for psychiatric disorders, including psychosis. Individuals with 22q11DS are thought to experience increased levels of chronic stress, which could lead to alterations in hypothalamic-pituitary-adrenocortical (HPA)-axis functioning. In the current study, we investigated for the first time diurnal salivary cortisol profiles in adolescents and young adults with 22q11DS as well as their link with stress exposure, coping strategies and psychopathology, including psychotic symptoms. Methods Salivary cortisol was collected from adolescents and young adults with 22q11DS (n = 30, age = 19.7) and matched healthy controls (HC; n = 36, age = 18.5) six times a day for two days. Exposure to stressful life events, including peer victimization, coping strategies and general psychopathology were assessed with questionnaires. Psychotic symptoms were evaluated with a clinical interview.Results We observed similar daily levels and diurnal profiles of salivary cortisol in adolescents and young adults with 22q11DS compared to HCs. However, participants with 22q11DS reported less frequent exposure to stress than HCs. In 22q11DS, we observed a significant association between the use of non-adaptive coping strategies and the severity of positive psychotic symptoms. Cortisol level was not associated to severity of psychotic symptoms, but elevated cortisol awakening response (CAR) was found in participants with 22q11DS with higher levels of general psychopathology. Conclusions Our results do not support earlier propositions of altered HPA-axis functioning in 22q11DS but highlight the need to further investigate diurnal cortisol as an indicator of HPA-axis functioning and its link with (earlier) stress exposure and psychopathology in this population. Interventions should target the development of adaptive coping skills in preventing psychosis in 22q11DS.


2014 ◽  
Vol 18 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Susannah E. Murphy ◽  
Elizabeth C. Braithwaite ◽  
Isabelle Hubbard ◽  
Kate V. Williams ◽  
Elizabeth Tindall ◽  
...  

Abstract The Hypothalamic-Pituitary-Adrenal (HPA) axis has been proposed as a potential underlying biological mechanism linking prenatal depression with adverse offspring outcomes. However, it is unknown whether the reactivity of this system to stress is altered in pregnant women experiencing depression. The objective of this study was to investigate whether salivary cortisol response to a distressed infant film is enhanced in pregnant women with symptoms of depression compared with non-depressed controls. Salivary cortisol and subjective mood responses to the film were measured in 53 primiparous women, between 11 and 18 weeks gestation. Both groups showed similar increases in state anxiety in response to the film, but there was a significantly increased cortisol response in women experiencing symptoms of depression. Depression during pregnancy is associated with increased reactivity of the HPA axis. This is consistent with altered HPA axis functioning being a key mechanism by which prenatal mood disturbance can impact upon fetal development.


2004 ◽  
Vol 36 (05) ◽  
Author(s):  
A Pfennig ◽  
HE Kuenzel ◽  
N Kern ◽  
B Fuchs ◽  
J Brunner ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonio Reverter ◽  
Maria Ballester ◽  
Pamela A. Alexandre ◽  
Emilio Mármol-Sánchez ◽  
Antoni Dalmau ◽  
...  

Abstract Background Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical “single-gene-single-trait” approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. Results In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP–P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance. Conclusions Taken together, our results identified regulators, candidate genes, and mechanisms linked with microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to improve host-performance and microbial traits.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 809
Author(s):  
Sen Wang ◽  
Wanyu Liu ◽  
Jun Li ◽  
Haotian Sun ◽  
Yali Qian ◽  
...  

Microorganisms existing in airborne fine particulate matter (PM2.5) have key implications in biogeochemical cycling and human health. In this study, PM2.5 samples, collected in the typical basin cities of Xi’an and Linfen, China, were analyzed through high-throughput sequencing to understand microbial seasonal variation characteristics and ecological functions. For bacteria, the highest richness and diversity were identified in autumn. The bacterial phyla were dominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Metabolism was the most abundant pathway, with the highest relative abundance found in autumn. Pathogenic bacteria (Pseudomonas, Acinetobacter, Serratia, and Delftia) were positively correlated with most disease-related pathways. Besides, C cycling dominated in spring and summer, while N cycling dominated in autumn and winter. The relative abundance of S cycling was highest during winter in Linfen. For fungi, the highest richness was found in summer. Basidiomycota and Ascomycota mainly constituted the fungal phyla. Moreover, temperature (T) and sulfur dioxide (SO2) in Xi’an, and T, SO2, and nitrogen dioxide (NO2) in Linfen were the key factors affecting microbial community structures, which were associated with different pollution characteristics in Xi’an and Linfen. Overall, these results provide an important reference for the research into airborne microbial seasonal variations, along with their ecological functions and health impacts.


Author(s):  
Kuan Chen ◽  
James Cheng-Chung Wei ◽  
Hei-Tung Yip ◽  
Mei-Chia Chou ◽  
Renin Chang

Mycoplasma pneumoniae (M. pneumoniae) is not only one of the most common pathogenic bacteria for respiratory infection but also a trigger for many autoimmune diseases. Its infection process shared many similarities with the pathogenesis of myasthenia gravis (MG) at cellular and cytokine levels. Recent case reports demonstrated patients present with MG after M. pneumoniae infection. However, no epidemiological studies ever looked into the association between the two. Our study aimed to investigate the relationship between M. pneumoniae infection and subsequent development of MG. In this population-based retrospective cohort study, the risk of MG was analyzed in patients who were newly diagnosed with M. pneumoniae infection between 2000 and 2013. A total of 2428 M. pneumoniae patients were included and matched with the non-M. pneumoniae control cohort at a 1:4 ratio by age, sex, and index date. Cox proportional hazards regression analysis was applied to analyze the risk of MG development after adjusting for sex, age, and comorbidities, with hazard ratios and 95% confidence intervals. The incidence rates of MG in the non-M. pneumoniae and M. pneumoniae cohorts were 0.96 and 1.97 per 10,000 person-years, respectively. Another case–control study of patients with MG (n = 515) was conducted to analyze the impact of M. pneumoniae on MG occurrence as a sensitivity analysis. The analysis yielded consistent absence of a link between M. pneumoniae and MG. Although previous studies have reported that M. pneumoniae infection and MG may share associated immunologic pathways, we found no statistical significance between M. pneumoniae infection and subsequent development of MG in this study.


Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Ashani Lecamwasam ◽  
Tiffanie M. Nelson ◽  
Leni Rivera ◽  
Elif I. Ekinci ◽  
Richard Saffery ◽  
...  

(1) Background: Individuals with diabetes and chronic kidney disease display gut dysbiosis when compared to healthy controls. However, it is unknown whether there is a change in dysbiosis across the stages of diabetic chronic kidney disease. We investigated a cross-sectional study of patients with early and late diabetes associated chronic kidney disease to identify possible microbial differences between these two groups and across each of the stages of diabetic chronic kidney disease. (2) Methods: This cross-sectional study recruited 95 adults. DNA extracted from collected stool samples were used for 16S rRNA sequencing to identify the bacterial community in the gut. (3) Results: The phylum Firmicutes was the most abundant and its mean relative abundance was similar in the early and late chronic kidney disease group, 45.99 ± 0.58% and 49.39 ± 0.55%, respectively. The mean relative abundance for family Bacteroidaceae, was also similar in the early and late group, 29.15 ± 2.02% and 29.16 ± 1.70%, respectively. The lower abundance of Prevotellaceae remained similar across both the early 3.87 ± 1.66% and late 3.36 ± 0.98% diabetic chronic kidney disease groups. (4) Conclusions: The data arising from our cohort of individuals with diabetes associated chronic kidney disease show a predominance of phyla Firmicutes and Bacteroidetes. The families Ruminococcaceae and Bacteroidaceae represent the highest abundance, while the beneficial Prevotellaceae family were reduced in abundance. The most interesting observation is that the relative abundance of these gut microbes does not change across the early and late stages of diabetic chronic kidney disease, suggesting that this is an early event in the development of diabetes associated chronic kidney disease. We hypothesise that the dysbiotic microbiome acquired during the early stages of diabetic chronic kidney disease remains relatively stable and is only one of many risk factors that influence progressive kidney dysfunction.


Sign in / Sign up

Export Citation Format

Share Document