scholarly journals Quantitative High-Resolution CpG Island Mapping with Pyrosequencing™ Reveals Disease-Specific Methylation Patterns of the CDKN2B Gene in Myelodysplastic Syndrome and Myeloid Leukemia

2007 ◽  
Vol 53 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Kai Brakensiek ◽  
Luzie U Wingen ◽  
Florian Länger ◽  
Hans Kreipe ◽  
Ulrich Lehmann

Abstract Background: Gene silencing through aberrant CpG island methylation is the most extensively analyzed epigenetic event in human tumorigenesis and has huge diagnostic and prognostic potential. Methylation patterns are often very heterogeneous, however, presenting a serious challenge for the development of methylation assays for diagnostic purposes. Methods: We used Pyrosequencing™ technology to determine the methylation status of 68 CpG sites in the CpG island of the CDKN2B gene [cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)], frequently hypermethylated in myeloid malignancies, in a series of bone marrow samples from patients with myelodysplasia and myeloid leukemia (n = 82) and from 32 controls. A total of 7762 individual methylation sites were quantitatively evaluated. Precision and reproducibility of the quantification was evaluated with several overlapping primers. Results: The use of optimized sequencing primers and the new Pyro Q-CpG™ software enabled precise and reproducible quantification with a single sequencing primer of up to 15 CpG sites distributed over ∼100 bp. Extensive statistical analyses of the whole CpG island revealed for the first time disease-specific methylation patterns of the CDKN2B gene in myeloid malignancies and small regions of differential methylation with high discriminatory power that enabled differentiation of even low-grade myelodysplastic syndrome samples from the controls, a result that was confirmed in an independent group of 9 control and 36 patient samples. Conclusion: The precise quantitative methylation mapping of whole CpG islands is now possible with Pyrosequencing software in combination with optimized sequencing primers. This method reveals disease-specific methylation patterns and enables the development of specific diagnostic assays.

2020 ◽  
Vol 21 (17) ◽  
pp. 5972
Author(s):  
Michaela Dostalova Merkerova ◽  
Zdenek Krejcik ◽  
Katarina Szikszai ◽  
David Kundrat

Circular RNAs (circRNAs) constitute a recently recognized group of noncoding transcripts that function as posttranscriptional regulators of gene expression at a new level. Recent developments in experimental methods together with rapidly evolving bioinformatics approaches have accelerated the exploration of circRNAs. The differentiation of hematopoietic stem cells into a broad spectrum of specialized blood lineages is a tightly regulated process that depends on a multitude of factors, including circRNAs. However, despite the growing number of circRNAs described to date, the roles of the majority of them in hematopoiesis remain unknown. Given their stability and disease-specific expression, circRNAs have been acknowledged as novel promising biomarkers and therapeutic targets. In this paper, the biogenesis, characteristics, and roles of circRNAs are reviewed with an emphasis on their currently recognized or presumed involvement in hematopoiesis, especially in acute myeloid leukemia and myelodysplastic syndrome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2437-2437
Author(s):  
Ying Jiang ◽  
Christine L. OKeefe ◽  
Andrew Dunbar ◽  
Anjali Advani ◽  
Mikkael A. Sekeres ◽  
...  

Abstract Genomic imprinting and epigenetic silencing determine tissue-specific methylation patterns. Altered methylation of CpG islands within gene promoters has been hypothesized as one pathogenetic mechanism operative in myelodysplastic syndrome (MDS). Promoter hypermethylation of various empirically selected tumor suppressor genes has been found in MDS prompting application of hypomethylating drugs in this disease. Identification of hypermethylated genes predicting response to these drugs would have a major impact on clinical practice. However, to date methylation-based prognostic algorithms have not been established. Global analysis of DNA methylation patterns may help to identify hypermethylated genes/promoters associated with the pathogenesis of MDS. Recently, microarray-based DNA methylation analysis platforms enabled a powerful, high-throughput analysis of the methylation status of hundreds of genes. The GoldenGate Methylation Cancer Panel I, spanning 1,536 independent CpG sites selected from 807 selected genes was applied to determine the methylation status in MDS patients (N=51; 21 low grade (RA, MDS-U, RARS or RCMD), 26 high grade (AML or RAEB) and 4 CMML). The methylation status was determined based on an internal reference and compared to healthy controls (N=22). Methylation values were averaged among the patients or analyzed separately for each patient in comparison to average values obtained in controls. Overall, controls showed a lesser degree of methylation than advanced MDS patients (average intensity 0.326 vs. 0.339, p<0.05). Subsequently, we concentrated on hypermethylated genes. There were no genes uniformly hypermethylated in all patients. For 70%, 50%, and 30% of patients with advanced MDS, 1, 26, and 85 loci were concordantly hypermethylated, while in 70%, 50% and 30% of low risk patients 5, 23 and 31 were hypermethylated, respectively. The most consistently hypermethylated genes (>50% of patients), included tumor suppressor genes (DCC, SLC22A18, FAT, TUSC3), genes involved in DNA repair (OGG1, DDB2, BCR, PARP1), cell cycle control (DBC1, SMARCB1), differentiation (MYOD1, TDGF1, FGF2, NOTCH4) and apoptosis (HDAC1, ALOX12, AXIN1). Despite the variability, the aberrant methylation spectrum in CMML, low grade MDS and high grade MDS showed significant overlap (for example FZD9, IL16, EVI2A, MBD2 and BCR), which suggests that these genes may relate to the common tumorigenesis in MDS. Certain genes show specific methylation correlating to the morphologic diagnosis and may serve as diagnostic markers. For example, the promoter of HDAC1 is hypomethylated in 81% of sAML/RAEB1/2 patients but hypermethylated in 81% of low risk cases. To assess the link between epigenetic changes and chromosomal abnormalities, we also investigated methylation pattern of MDS with del5q for selected genes at the 5q locus. Some genes that are involved in apoptosis (WNT1, TNF receptor) and proliferation (MAP3K8, CSF3) were found to be hypermethylated in comparison to controls, suggesting that epigenetic silencing may enhance the effect of haploinsuffciency for some of the genes. In sum, our study, the first application of a high-throughput microarray methylation assay in MDS, demonstrates that complex methylation patterns exist in MDS and may allow for identification for clinically relevant methylation markers.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1-1
Author(s):  
Anna Jankowska ◽  
Myunggon Ko ◽  
Yun Huang (equal contribution) ◽  
Utz J. Pape ◽  
Hadrian Szpurka ◽  
...  

Abstract Abstract 1 TET2 mutations are frequently found across broad spectrum of myeloid malignancies but how these mutations contribute to diseases is still unknown. Preliminary results from our laboratory have suggested that TET2 converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and consequently, the levels of 5-hmC may be lower in genomes of mutant bone marrow cells. To facilitate study of TET2 function we developed a blot assay to detect 5-hmC in genomic DNA with a specific antiserum to 5-hmC. In a second improved assay with increased sensitivity and precision, we treated genomic DNA with bisulfite in order to convert 5-hmC to cytosine 5-methylenesulfonate (CMS) and measured 5-hmC levels indirectly using a specific anti-CMS serum. Based on the results of this technique we demonstrate here for the first time that indeed TET2 mutations in predicted catalytic residues and other positions compromised TET2 function. We studied 102 patients with various myeloid malignancies (4/28 MDS, 14%, 26/48 MDS/MPN, 54% and 1/4 MPN, 2% and primary 2/11 AML 18% and 3/11 sAML, 27% TET2 mutants, respectively) and compared to wt cases or controls (N=17). Mutations were found throughout the entire coding region and were mostly inactivating (33/45 TET2 mutations). The levels of 5-hmC in genomic DNA from TET2 mutants were significantly decreased in comparison to wt cases and controls (p=4.5e-08 and p=1.8e-09, respectively). Particularly low levels of 5-hmC were found in patients with homozygous (UPD)/hemizygous (deletion) TET2 mutations and those with biallelic mutations. Surprisingly, 18% of all TET2 WT patients also showed low levels of genomic 5-hmC (despite normal TET2 mRNA expression), suggesting that these patients may carry not yet identified variants/lesions in TET2 or other partner proteins involved in TET2-mediated catalysis. To further investigate the impact of TET2 mutations associated with myeloid malignancies we also introduced 9 different missense mutations corresponding to those found in patients into murine Tet2 cells; severe loss of enzymatic activity was observed in 7/9 cases as measured by greatly diminished 5-hmC levels. To study the role of Tet2 in normal hematopoiesis we depleted Tet2 in C57BL/6 mice by retrovirus-mediated transduction of shRNA against Tet2. Tet2 depletion is associated with skewing of hematopoietic differentiation towards the monocyte/macrophage lineage. To further investigate the function of TET2 we transduced the myeloid THP-1 cell line with lentiviral vector containing TET2 cDNA (TET2+) or an empty vector. This manipulation allowed us to select clones showing 19-fold increase in TET2 mRNA expression without significantly alterations of proliferation kinetics. Using this model we studied the impact of TET2 overexpression on resultant methylation pattern of CpG sites. We have applied Illumina Infinium HumanMethylation27 arrays (27,5K CpG sites/14.4K genes). Overexpression of TET2 resulted in a distinct promoter methylation patterns with 169 altered CpG sites with difference of averaged β>0.5 (considered significant as compared to control). Among these differentially methylated loci, 27 promoters were significantly hypomethylated while 42 were hypermethylated as compared to control cells. Change in methylation pattern observed through overexpression of TET2 in vitro prompted us to analyze methylation patterns in patients with and without TET2 mutations or those with decreased 5-hmC levels. Using methylation arrays a total of 62 cases were analyzed. When patients were grouped based on the levels of 5hmC, an associated methylation signature can be clearly discerned with 2512 differentially methylated loci and distinct skewing towards hypomethylation (2510 sites; e.g., TMEM102, ABCC11) vs. hypermethylation (2 sites, AIM2 and SP140), consistent with the observation made in the TET2+ cells line. In sum, our results provide strong evidence for TET2 as the first mutated gene in myeloid malignancies that is involved in conversion of 5-mC to 5-hmC in DNA, indicating the novel role of TET2 in a substantial component of epigenetic deregulation in myeloid malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5106-5106
Author(s):  
Mitsuteru Hiwatari ◽  
Kentaro Oki ◽  
Jyunko Takita ◽  
Riki Nishimura ◽  
Masashi Sanada ◽  
...  

Abstract Abstract 5106 NADP+dependent isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) catalyzes the oxidative carboxylation of isocitrate to α-ketoglutarate (α-KG) in citric acid cycle. Recently, recurrent somatic missense mutations in IDH1 at codon R132, as well as IDH2 at codon R172 have been identified in low-grade gliomas/secondary glioblastoma by high throughput sequencing. Subsequent studies also revealed that acquired somatic mutations in IDH1 and IDH2 frequently occurred in adult hematological malignancies, such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), and that these mutations were associated with older age, poor prognosis, cytogenetically normal AML, and the genotype of mutated NPM1 without FLT3-internal tandem duplication (ITD). Tumor-derived IDH1 and IDH2 mutations impair the affinity of the enzymes for the substrates and dominantly inhibit wild-type IDH1 and IDH2 activities through the formation of catalytically inactive heterodimers. However, little is known about the incidence and prognostic values of IDH1 and IDH2 mutations in pediatric hematological malignancies. Here, we analyzed mutations that involve the activation sites of IDH1 and IDH2 using polymerase chain reaction amplification/sequencing in a total of 244 samples of pediatric myeloid malignancies as well as infantile leukemia including 17 AML-derived cell lines, 115 primary cases of AML, 28 primary cases of MDS, 15 primary cases of juvenile myelomonocytic leukaemia (JMML), 6 chronic myeloid leukemia (CML)-derived cell line, 18 primary cases of CML and 45 infantile leukemia(6 AML and 39 acute lymphoblastic leukemia (ALL) patients). Moreover, to assess whether IDH1 and IDH2 mutations overlap with known gene abnormalities, such as FLT3, c-KIT, and NPM1 mutations, mutational analyses of FLT3, c-KIT, and NPM1 were also performed. The common IDH2 R140Q mutation was detected in a single AML case, whereas no IDH1 mutation was detected in samples of myeloid malignancies. Although no IDH2 mutation was detected in infantile leukemias, novel P127S, H133I and I130V of IDH1 mutations were detected in 4 of 45 (8.9%) infantile ALL cases. No IDH1 and IDH2 mutations were detected in the JMML, MDS, or CML samples examined. Six AML samples including one cell line had c-KIT mutations (D816V, N822K, or D419fs), 12 AML cases had FLT3-ITD and 10 infantile leukemia cases had FLT3 mutations (D835E or I836). The NPM1 mutation was detected in 2 of 132 AML samples. The AML case harboring the IDH2 mutation, Case 39 was a 12-year-old boy diagnosed as AML-M2 according to the French-American-British cooperative group classification system having t(8;21)(q22;q22), showed no abnormalities of NPM1, c-KIT, and FLT3. Remarkably, among 4 infantile ALL cases with IDH1 mutations, 3 cases showed mixed lineage leukemia(MLL) rearrangements with t(4;11). The FLT3-D835 mutation was found in 1 of 4 patients with IDH1 mutations. These results suggested that IDH1 mutations are one of the second genetic events in infant ALL with MLL rearrangements; however, it was concluded that the involvements of IDH1 and IDH2 mutations in the pathogenesis of pediatric myeloid malignancies are extremely rare. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2452-2452
Author(s):  
Jing Fang ◽  
Lyndsey Bolanos ◽  
Garrett Rhyasen ◽  
Carmen Rigolino ◽  
Agostino Cortelezzi ◽  
...  

Abstract Abstract 2452 Deletion of chromosome 5q in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients results in loss of miR-146a, which is a negative regulator of the innate immune pathway by targeting TNF receptor associated factor-6 (TRAF6). Therefore, MDS and AML patients with reduced miR-146a expression concomitantly exhibit elevated TRAF6 protein. TRAF6 is an E3 ubiquitin ligase that catalyzes K63-linked polyubiquitin chains on substrates that lead to pathway activation, one of which includes NF-kB. Mice lacking miR-146a, or with overexpression of TRAF6, develop AML- and MDS-like features. Bortezomib (Velcade©), which shows promise alone or in combination with chemotherapy in certain groups of MDS and AML patients, is a selective and reversible inhibitor of the 26S proteasome. Studies on the mechanism of action of Bortezomib have shown that pro-apoptotic proteins are stabilized following proteasome inhibition and contribute to the anti-cancer effect. In this report, paradoxically, we find that Bortezomib induces rapid and complete degradation of TRAF6 protein, but not mRNA, in MDS/AML cell lines and human CD34+ cells. A similar finding was observed when AML cells were treated with MG132, another proteasome inhibitor, indicating that degradation of TRAF6 is secondary to proteasomal inhibition. Interestingly, the reduction in TRAF6 protein coincides with Bortezomib-induced autophagy, as indicated by conversion of LC3B-I to LC3B-II and degradation of SQSTM1/p62, and subsequently with apoptosis in MDS/AML cells. Addition of an autophagy inhibitor (3-methyladenine [3-MA]) to Bortezomib-treated AML cells maintained TRAF6 protein expression and enhanced cell viability. Similarly, TRAF6 degradation was blocked by 3-MA when cells were treated with Rapamycin, an mTOR inhibitor and inducer of autophagy. These findings suggest that a mechanism of Bortezomib-induced cell death in myeloid malignancies involves elimination of TRAF6 protein by autophagosomes. Forced expression of TRAF6 in two AML cell lines partially blocked the cytotoxic effect of Bortezomib, suggesting that TRAF6 is an important target of Bortezomib. To determine whether loss of TRAF6 is sufficient to impede growth of MDS and AML, we used a genetic approach to inhibit TRAF6 in MDS/AML cell lines and bone marrow cells from MDS patients with deletion of chromosome 5q. RNAi-mediated depletion of TRAF6 in MDS and AML samples resulted in impaired malignant hematopoietic stem/progenitor function and rapid apoptosis. To uncover the molecular consequences following loss of TRAF6, we applied gene expression profiling and identified genes relevant to the survival of MDS and AML cells. In summary, these findings implicate TRAF6 in Bortezomib-induced cell death and in the maintenance of myeloid malignancies, and reveal a novel mechanism of TRAF6 regulation through autophagic degradation. Disclosures: Oliva: Celgene: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1366-1373 ◽  
Author(s):  
Heike Kroeger ◽  
Jaroslav Jelinek ◽  
Marcos R. H. Estécio ◽  
Rong He ◽  
Kimie Kondo ◽  
...  

AbstractDNA methylation of CpG islands around gene transcription start sites results in gene silencing and plays a role in leukemia pathophysiology. Its impact in leukemia progression is not fully understood. We performed genomewide screening for methylated CpG islands and identified 8 genes frequently methylated in leukemia cell lines and in patients with acute myeloid leukemia (AML): NOR1, CDH13, p15, NPM2, OLIG2, PGR, HIN1, and SLC26A4. We assessed the methylation status of these genes and of the repetitive element LINE-1 in 30 patients with AML, both at diagnosis and relapse. Abnormal methylation was found in 23% to 83% of patients at diagnosis and in 47% to 93% at relapse, with CDH13 being the most frequently methylated. We observed concordance in methylation of several genes, confirming the presence of a hypermethylator pathway in AML. DNA methylation levels increased at relapse in 25 of 30 (83%) patients with AML. These changes represent much larger epigenetic dysregulation, since methylation microarray analysis of 9008 autosomal genes in 4 patients showed hypermethylation ranging from 5.9% to 13.6% (median 8.3%) genes at diagnosis and 8.0% to 15.2% (median 10.6%) genes in relapse (P < .001). Our data suggest that DNA methylation is involved in AML progression and provide a rationale for the use of epigenetic agents in remission maintenance.


Author(s):  
Anna Hecht ◽  
Julia A. Meyer ◽  
Johann-Christoph Jann ◽  
Katja Sockel ◽  
Aristoteles Giagounidis ◽  
...  

AbstractMyelodysplastic syndrome (MDS) with isolated deletion of chromosome 5q (MDS del5q) is a distinct subtype of MDS with quite favorable prognosis and excellent response to treatment with lenalidomide. Still, a relevant percentage of patients do not respond to lenalidomide and even experience progression to acute myeloid leukemia (AML). In this study, we aimed to investigate whether global DNA methylation patterns could predict response to lenalidomide. Genome-wide DNA methylation analysis using Illumina 450k methylation arrays was performed on n=51 patients with MDS del5q who were uniformly treated with lenalidomide in a prospective multicenter trial of the German MDS study group. To study potential direct effects of lenalidomide on DNA methylation, 17 paired samples pre- and post-treatment were analyzed. Our results revealed no relevant effect of lenalidomide on methylation status. Furthermore, methylation patterns prior to therapy could not predict lenalidomide response. However, methylation clustering identified a group of patients with a trend towards inferior overall survival. These patients showed hypermethylation of several interesting target genes, including genes of relevant signaling pathways, potentially indicating the evaluation of novel therapeutic targets.


2010 ◽  
Vol 32 (1-2) ◽  
pp. 131-143
Author(s):  
Nan Yang ◽  
Esther R. Nijhuis ◽  
Haukeline H. Volders ◽  
Jasper J. H. Eijsink ◽  
Ágnes Lendvai ◽  
...  

Objectives: To determine methylation status of nine genes, previously described to be frequently methylated in cervical cancer, in squamous intraepithelial lesions (SIL).Methods: QMSP was performed in normal cervix, low-grade (L)SIL, high-grade (H)SIL, adenocarcinomas and squamous cell cervical cancers, and in corresponding cervical scrapings.Results: Only CCNA1 was never methylated in normal cervices and rarely in LSILs. All other genes showed methylation in normal cervices, with CALCA, SPARC and RAR-β2 at high levels. Methylation frequency of 6 genes (DAPK, APC, TFPI2, SPARC, CCNA1 and CADM1) increased with severity of the underlying cervical lesion. DAPK showed the highest increase in methylation frequency between LSIL and HSIL (10% vs. 40%, p < 0.05), while CCNA1 and TFPI2 were most prominently methylated in cervical cancers compared to HSILs (25% vs. 52%, p < 0.05, 30% vs. 58%, p < 0.05). CADM1 methylation in cervical cancers was related to depth of invasion (p < 0.05) and lymph vascular space involvement (p < 0.01), suggesting a role in invasive potential of cervical cancers. Methylation ratios in scrapings reflected methylation status of the underlying lesions (p < 0.05).Conclusion: Methylation of previously reported cervical cancer specific genes frequently occurs in normal epithelium. However, frequency of methylation increases during cervical carcinogenesis, with CCNA1 and DAPK as the best markers to distinguish normal/LSIL from HSIL/cancer lesions.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2823-2829 ◽  
Author(s):  
Minoru Toyota ◽  
Kenneth J. Kopecky ◽  
Mutsumi-Ohe Toyota ◽  
Kam-Wing Jair ◽  
Cheryl L. Willman ◽  
...  

Abstract Aberrant methylation of multiple CpG islands has been described in acute myeloid leukemia (AML), but it is not known whether these are independent events or whether they reflect specific methylation defects in a subset of cases. To study this issue, the methylation status of 14 promoter-associated CpG islands was analyzed in 36 cases of AML previously characterized for estrogen-receptor methylation (ERM). Cases with methylation density of 10% or greater were considered positive. Seventeen cases (47%) were ERM+ while 19 cases were ERM−. Hypermethylation of any of the following,p15, p16, CACNA1G,MINT1, MINT2, MDR1,THBS1, and PTC1 (2 promoters), was relatively infrequent (6% to 31% of patients). For each of these CpG islands, the methylation density was positively correlated with ERM density (rank order correlation coefficients, 0.32-0.59; 2-tailedP ≤ .058 for each gene). Hypermethylation ofMYOD1, PITX2, GPR37, andSDC4 was frequently found in AML (47% to 64% of patients). For each of these genes as well, methylation density was positively correlated with ERM density (correlation coefficients 0.43 to 0.69, P ≤ .0087 for each gene). MLH1 was unmethylated in all cases. Hypermethylation of p15,MDR1, and SDC4 correlated with reduced levels of expression. There was an inverse correlation between age and the number of genes methylated (P = .0030). It was concluded that CpG-island methylation in AML results from methylation defects in subsets of cases. These results have potential implications for the classification and prognosis of AML and for the identification of patients who may benefit from treatment with methylation inhibitors.


Sign in / Sign up

Export Citation Format

Share Document