scholarly journals Seroprevalence study of peste des petits ruminants in sheep and goats in the northern region of India

2020 ◽  
Vol 13 (8) ◽  
pp. 1573-1580 ◽  
Author(s):  
Vinayagamurthy Balamurugan ◽  
Bibitha Varghese ◽  
Kirubakaran Vinod Kumar ◽  
Dhanavelu Muthuchelvan ◽  
R. Dheeraj ◽  
...  

Background and Aim: Peste des petits ruminants (PPR) is a contagious, World Organization for Animal Health notifiable, economically important, transboundary morbilliviral disease of sheep and goats. Studying seroprevalence of PPR from different geographical areas under varying agro-climatic conditions may help in formulating effective and appropriate disease control strategies under the ongoing national PPR control program. The present cross-sectional study describes the prevalence of PPR virus antibodies in sheep and goats in the various epidemiological units in different states (Haryana, Himachal Pradesh [HP], Jammu and Kashmir [J&K], Punjab, Uttarakhand [UK], and Uttar Pradesh [UP]) of the northern region of India. Materials and Methods: A total of 5843 serum samples (sheep [n=2463] and goats [n=3380]) were collected by stratified random sampling method from 322 epidemiological units in the studied region during 2017-2018 and tested for PPR virus (PPRV) antibodies by competitive ELISA. Results: The results revealed that an overall seroprevalence of 44.05% (2574/5843) with 57.32%, 55.22%, 65.69%, 37.09%, 32.73%, and 29.35% prevalence of PPRV antibodies in small ruminants in Haryana, Punjab, UP, HP, J&K, and UK states, respectively. Further, Chi-squared test revealed an association of PPRV antibodies in goats (χ2=252.28, p<0.01) and sheep (χ2=192.12, p<0.01) across different states in the region. Conclusion: The seroprevalence in majority of the epidemiological units (n=130) in sheep and goats in the studied region had <30%. This necessitates comprehensive, rigorous, continuous vaccination and active surveillance programs for few more years to achieve the desired 70% seroprevalence level of PPRV antibodies in population and to make the northern region of India, as PPR free zone.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1698
Author(s):  
Daniel Pius Mdetele ◽  
Erick Komba ◽  
Misago Dimson Seth ◽  
Gerald Misinzo ◽  
Richard Kock ◽  
...  

Peste des petits ruminants (PPR) is an important transboundary animal disease of domestic small ruminants, camels, and wild artiodactyls. The disease has significant socio-economic impact on communities that depend on livestock for their livelihood and is a threat to endangered susceptible wild species. The aim of this review was to describe the introduction of PPR to Tanzania and its subsequent spread to different parts of the country. On-line databases were searched for peer-reviewed and grey literature, formal and informal reports were obtained from Tanzanian Zonal Veterinary Investigation Centres and Laboratories, and Veterinary Officers involved with PPR surveillance were contacted. PPR virus (PPRV) was confirmed in northern Tanzania in 2008, although serological data from samples collected in the region in 1998 and 2004, and evidence that the virus was already circulating in Uganda in 2003, suggests that PPRV might have been present earlier than this. It is likely that the virus which became established in Tanzania was introduced from Kenya between 2006–7 through the cross-border movement of small ruminants for trade or grazing resources, and then spread to eastern, central, and southern Tanzania from 2008 to 2010 through movement of small ruminants by pastoralists and traders. There was no evidence of PPRV sero-conversion in wildlife based on sera collected up to 2012, suggesting that they did not play a vectoring or bridging role in the establishment of PPRV in Tanzania. PPRV lineages II, III and IV have been detected, indicating that there have been several virus introductions. PPRV is now considered to be endemic in sheep and goats in Tanzania, but there has been no evidence of PPR clinical disease in wildlife species in Tanzania, although serum samples collected in 2014 from several wild ruminant species were PPRV sero-positive. Similarly, no PPR disease has been observed in cattle and camels. In these atypical hosts, serological evidence indicates exposure to PPRV infection, most likely through spillover from infected sheep and goats. Some of the challenges for PPRV eradication in Tanzania include movements of small ruminants, including transboundary movements, and the capacity of veterinary services for disease surveillance and vaccination. Using wildlife and atypical domestic hosts for PPR surveillance is a useful indicator of endemism and the ongoing circulation of PPRV in livestock, especially during the implementation of vaccination to control or eliminate the disease in sheep and goats. PPR disease has a major socio-economic impact in Tanzania, which justifies the investment in a comprehensive PPRV eradication programme.


2020 ◽  
Author(s):  
Tulsi Ram Gompo ◽  
Rubina Shah ◽  
Ishwari Tiwari ◽  
Yam Bahadur Gurung

Abstract Background Brucellosis is a zoonotic disease of animals and humans caused by the Brucella spps. In Nepal, the presence of brucellosis in small ruminants, e.g., sheep and goats, has impacted the farmers' livelihood and people's food safety. A cross-sectional study was conducted at Rupandehi districts of Nepal to the discover the seroepidemiology and associated risk factors of brucellosis in sheep and goat population. Altogether, 19 sheep and 60 goat farms located in the districts' local units were visited, and the owners were interviewed to get the information on animal characteristics, management, and movement patterns. Three hundred fifty-seven serum samples (80 sheep and 277 goat’s samples) were collected from selected herd based on the probability proportional to their sizes. Each serum sample was tested for Rose Bengal Plate Test (RBPT) and ELISA to estimate the seropositivity. Bivariate analysis followed by multivariable logistic regression was applied to calculate corresponding odds ratios of each variable associated with the brucellosis. Results Out of 80 sheep samples, 12 (15%; 95%CI: 8.79%-24.41%, P<0.001) and out of 277 goat samples 3 (1.1%; 0.37%-3.14%, P<0.001) were tested positive to brucellosis. Age of greater than 1.5 years (OR= 6.39, 95%CI: 1.23, 54.67, p= 0.04) was identified as the significant risk factor for brucellosis in sheep population. While in the goat population, none of the variables were identified as the significant risk factors in multivariable regression analysis. However, the goat from the frequent grazing herds had borderline significance (OR = 8.81, 95%CI: 0.44, 174.56, p<0.15). It might be because of the regular movement of sheep herds that get mixed up with the goat populations. Conclusion The study provides evidence that the burden of brucellosis in sheep is significantly higher than goats. The brucellosis control program in sheep should be applied immediately, as the contiguous herds of sheep and goats keep mixing while grazing and selling. Also, the strict biosecurity and biosafety measures should be implemented among the sheepherders to prevent infection of Brucella in them. We suggest further study on both small ruminants and the sheep owners to reveal the transmission dynamics through one health approach.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anselme Shyaka ◽  
Marie Aurore Ugirabe ◽  
Jonas Johansson Wensman

The status of Peste des Petits Ruminants (PPR) in Rwanda is unknown, despite its prevalence in neighboring countries. A cross-sectional sampling of goats and sheep was carried out in five districts of Rwanda located closer to neighboring countries endemic to PPR. Serum samples were analyzed using a commercial ELISA, to detect antibodies to PPR virus (PPRV). Sixty-eight samples [14.8, 95% Confidence Interval (CI): 11.7–18.4] were seropositive for PPR, of which 17.4% (95% CI: 11.6–24.6; 25/144) were from sheep, whereas 13.6% (95% CI: 10.0–17.9; 43/316) were from goats. Seropositivity ranged from 8.9 to 17.3% (goats) and from 10.5 to 25.8% (sheep) in sampled districts. Seropositivity was slightly higher in males than females in both goats (15.7 vs. 12.4%) and sheep (17.7 vs. 17.1%), and were significantly marked in goats and sheep aged more than 15 months (goats: 17.9, 95% CI: 12.9–24.0; sheep: 22.2, 95% CI: 14.1–32.2) than those between 6 and 15 months (goats: 6.1, 95% CI: 2.5–12.1; sheep: 9.3, 95% CI: 3.1–20.3). Sampling was non-randomized and results are not representative of the true prevalence of PPR antibody in small ruminants. Thus, data does not allow to fully discuss the findings beyond the presence/absence certitude and the comparisons made must be interpreted with caution. The presence of specific antibodies to PPRV may, however, be linked to one or a combination of following scenarios: (1) prevalence and persistence of PPRV in sampled regions which would cause low level of clinical cases and/or mortalities that go unnoticed; (2) introduction of PPRV to herds through movements of livestock from neighboring infected countries, and/or (3) events of disease outbreaks that are underreported by farmers and veterinarians. In addition to strengthen veterinary surveillance mechanisms, further studies using robust sampling methods and integrating livestock and wildlife, should be carried out to fully elucidate PPR epidemiology in Rwanda.


1994 ◽  
Vol 112 (1) ◽  
pp. 225-231 ◽  
Author(s):  
J. Anderson ◽  
J. A. Mckay

SummaryMonoclonal antibody–based competitive ELISA (C–ELISA) have been used for the specific measurement of antibodies to both rinderpest and peste des petits ruminants (PPR) viruses in cattle, sheep and goats. Examination of serum samples from sheep and goats in Gambia, before and after vaccination with rinderpest vaccine, suggested that antibodies to PPR virus could prevent an immune response to the rinderpest vaccine. Cattle sera from Nigeria and Ghana showed a high prevalence of antibody against PPR virus which may explain the difficulty experienced in some countries in achieving high post-vaccination immunity levels against rinderpest. Because antibodies against PPR virus are both cross–neutralizing and cross-protective against rinderpest virus further vaccination in the presence of antibodies against PPR virus may be a waste of national resources. This paper presents serological evidence for the transmission of PPR virus from sheep and goats to cattle and highlights the need to include PPR serology in the sero-monitoring programme to give a better indication of national herd immunity.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Sajad Ahmad Wani ◽  
Manas Ranjan Praharaj ◽  
Amit R. Sahu ◽  
Raja Ishaq Nabi Khan ◽  
Shikha Saxena ◽  
...  

ABSTRACT Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC subsets studied were CD4+, CD8+, CD14+, CD21+, and CD335+ cells from day 0 and day 5 of sheep and goats vaccinated with Sungri/96 peste des petits ruminants virus. Assessment of the immune response processes enriched by the differentially expressed genes (DEGs) in all the subsets suggested a strong dysregulation toward the development of early inflammatory microenvironment, which is very much required for differentiation of monocytes to macrophages, and activation as well as the migration of dendritic cells into the draining lymph nodes. The protein-protein interaction networks among the antiviral molecules (IFIT3, ISG15, MX1, MX2, RSAD2, ISG20, IFIT5, and IFIT1) and common DEGs across PBMC subsets in both species identified ISG15 to be a ubiquitous hub that helps in orchestrating antiviral host response against peste des petits ruminants virus (PPRV). IRF7 was found to be the key master regulator activated in most of the subsets in sheep and goats. Most of the pathways were found to be inactivated in B lymphocytes of both the species, indicating that 5 days postvaccination (dpv) is too early a time point for the B lymphocytes to react. The cell-mediated immune response and humoral immune response pathways were found more enriched in goats than in sheep. Although animals from both species survived the challenge, a contrast in pathway activation was observed in CD335+ cells. IMPORTANCE Peste des petits ruminants (PPR) by PPR virus (PPRV) is an World Organisation for Animal Health (OIE)-listed acute, contagious transboundary viral disease of small ruminants. The attenuated Sungri/96 PPRV vaccine used all over India against this PPR provides long-lasting robust innate and adaptive immune response. The early antiviral response was found mediated through type I interferon-independent interferon-stimulated gene (ISG) expression. However, systems biology behind this immune response is unknown. In this study, in vivo transcriptome profiling of PBMC subsets (CD4+, CD8+, CD14+, CD21+, and CD335+) in vaccinated goats and sheep (at 5 days postvaccination) was done to understand this systems biology. Though there are a few differences in the systems biology across cells (specially the NK cells) between sheep and goats, the coordinated response that is inclusive of all the cell subsets was found to be toward the induction of a strong innate immune response, which is needed for an appropriate adaptive immune response.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 838
Author(s):  
Bryony A. Jones ◽  
Mana Mahapatra ◽  
Daniel Mdetele ◽  
Julius Keyyu ◽  
Francis Gakuya ◽  
...  

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015–2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant’s gazelle, impala, Thomson’s gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018–2019, a cross-sectional survey of randomly selected African buffalo and Grant’s gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant’s gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife–livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson’s gazelle and wildebeest.


2021 ◽  
Vol 74 (1) ◽  
Author(s):  
Molhima M. Elmahi ◽  
Mohammed O. Hussien ◽  
Abdel Rahim E. Karrar ◽  
Amira M. Elhassan ◽  
Abdel Rahim M. El Hussein

Abstract Background Bluetongue (BT) is a vector-borne viral disease of ruminant and camelid species which is transmitted by Culicoides spp. The causative agent of BT is bluetongue virus (BTV) that belongs to genus Orbivirus of the family Reoviridae. The clinical disease is seen mainly in sheep but mostly sub-clinical infections of BT are seen in cattle, goats and camelids. The clinical reaction of camels to infection is usually not apparent. The disease is notifiable to the World Organization for Animal Health (OIE), causing great economic losses due to decreased trade and high mortality and morbidity rates associated with bluetongue outbreaks. The objective of this study was to investigate the seroprevalence of BTV in camels in Kassala State, Eastern Sudan and to identify the potential risk factors associated with the infection. A cross sectional study using a structured questionnaire survey was conducted during 2015–2016. A total of 210 serum samples were collected randomly from camels from 8 localities of Kassala State. The serum samples were screened for the presence of BTV specific immunoglobulin (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (cELISA). Results Seropositivity to BTV IgG was detected in 165 of 210 camels’ sera accounting for a prevalence of 78.6%. Potential risk factors to BTV infection were associated with sex (OR = 0.061, p-value = 0.001) and seasonal river as water source for drinking (OR = 32.257, p-value = 0.0108). Conclusions Sex and seasonal river as water source for drinking were considered as potential risk factors for seropositivity to BTV in camels. The high prevalence of BTV in camels in Kassala State, Eastern Sudan, necessitates further epidemiological studies of BTV infection in camels and other ruminant species to better be able to control BT disease in this region.


2020 ◽  
Vol 165 (10) ◽  
pp. 2147-2163 ◽  
Author(s):  
William G. Dundon ◽  
Adama Diallo ◽  
Giovanni Cattoli

Abstract Small ruminants (e.g., sheep and goats) contribute considerably to the cash income and nutrition of small farmers in most countries in Africa and Asia. Their husbandry is threatened by the highly infectious transboundary viral disease peste des petits ruminants (PPR) caused by peste-des-petits-ruminants virus (PPRV). Given its social and economic impact, PPR is presently being targeted by international organizations for global eradication by 2030. Since its first description in Côte d’Ivoire in 1942, and particularly over the last 10 years, a large amount of molecular epidemiological data on the virus have been generated in Africa. This review aims to consolidate these data in order to have a clearer picture of the current PPR situation in Africa, which will, in turn, assist authorities in global eradication attempts.


2021 ◽  
Vol 77 (05) ◽  
pp. 226-231
Author(s):  
WIESŁAW NIEDBALSKI ◽  
ANDRZEJ FITZNER ◽  
KRZYSZTOF BULENGER ◽  
ANDRZEJ KĘSY

Peste des petits ruminants (PPR) is a highly contagious and economically important, viral disease of small ruminants caused by the peste des petits ruminants virus (PPRV), which belongs to the genus Morbilivirus in the family Paramyxoviridae. PPR control is achieved mostly through vaccination and/or slaughter of susceptible animals coupled with clinical or laboratory-based diagnosis. Since clinical signs of PPR are not disease-specific and clinical diagnostics is not reliable, it should be confirmed by laboratory testing. Laboratory confirmation of clinical suspicions is made by detection of PPRV in blood, swabs or post-mortem tissues through classical virus isolation (VI), agar gel immunodiffusion (AGID)/agar gel precipitation test (AGPT), counter-immunoelectrophoresis (CIE), immunoperoxidase test (IPT) or enzyme-linked immunosorbent (ELISA) assays. However, these conventional methods have been superseded by more rapid, sensitive and accurate molecular diagnostic techniques based on the amplification of parts of either nucleocapsid (N) or fusion (F) protein gene, such as RT-PCR, real-time RT-PCR, reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription recombinase polymerase amplification (RT-RPA) and Oxford nanopore MinION technology. Although these molecular diagnostic assays are accurate, rapid and sensitive, they have to be performed in laboratory settings, and samples must be transported under appropriate conditions from the field to the laboratory, which can delay the confirmation of PPRV infection. The recently developed immunochromatographic lateral flow device (IC-LFD) assay can be used in the field (“pen-side”) without the need for expensive equipment, so a well-established laboratory is not required. The control and eventual eradication of PPR is now one of the top priorities for the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE). In 2015, the international community agreed on a global strategy for PPR eradication, setting 2030 as a target date for elimination of the disease


Author(s):  
Samuel Mantip ◽  
Melvyn Quan ◽  
David Shamaki ◽  
Moritz Van Vuuren

Peste-des-petits-ruminants virus (PPRV) is a highly contagious, fatal and economically important viral disease of small ruminants that is still endemic and militates against the production of sheep and goats in endemic areas of the world. The aim of this study was to describe the viral strains within the country. This was carried out by collecting tissue and swab samples from sheep and goats in various agro-ecological zones of Nigeria. The phylogeny of archived PPRV strains or isolates and those circulating and causing recent outbreaks was determined by sequencing of the nucleoprotein (N)-gene. Twenty tissue and swab samples from apparently healthy and sick sheep and goats were collected randomly from 18 states, namely 3 states in each of the 6 agro-ecological zones visited. A total of 360 samples were collected. A total of 35 samples of 360 (9.7%) tested positive by reverse transcriptase–polymerase chain reaction, of which 25 were from oculo-nasal swabs and 10 were from tissue samples. Neighbour-joining phylogenetic analysis using Phylogenetic Analysis Using Parsimony (PAUP) identified four different lineages, that is, lineages I, II, III and IV. Interestingly, the Nigerian strains described in this study grouped in two separate major lineages, that is, lineages II and IV. Strains from Sokoto, Oyo, Plateau and Ondo states grouped according to the historical distribution of PPRV together with the Nigerian 75/1 strain of lineage II, while other strains from Sokoto, Oyo, Plateau, Akwa-Ibom, Adamawa, Kaduna, Lagos, Bauchi, Niger and Kano states grouped together with the East African and Asian strains of lineage IV. This finding confirms that both lineage II and IV strains of PPRV are circulating in Nigeria. Previously, only strains of lineage II were found to be present in the country.


Sign in / Sign up

Export Citation Format

Share Document