scholarly journals The Modeling of the Production Process of High-Starch Corn Hybrids of Different Maturity Groups

2021 ◽  
Vol 10 (1) ◽  
pp. 584 ◽  
Author(s):  
Vitalii Palamarchuk ◽  
Vadym Krychkovskyi ◽  
Inna Honcharuk ◽  
Nataliia Telekalo

The article presents the results of mathematical modeling based on the construction and use of various images of the object, process or system. The research involves the study of the dependence of the level of productivity and valuable farming traits of corn hybrids in the form of mathematical models. Field research was carried out during 2011-2017 on the experimental fields of the Department of Crop Production, Breeding and Bioenergy Crops of Vinnytsia National Agrarian University, at the state enterprise “Research Farm “Kordelivske” of the Institute of Potato Production of the National Academy of Agrarian Sciences of Ukraine under conditions of the right-bank Forest-Steppe in accordance with the guidelines provided in “Methodology of Field Experiments in Corn”. The use of computer technology, in particular, cluster analysis, from our point of view, allows us to approach the difficult task of improving the efficiency of the correct choice of hybrids and technologies to obtain the maximum level of bioethanol yield per unit area of maize hybrids. An ecological-genetic model of quantitative traits was used to study the phenotypic productivity of corn hybrids and to establish the influence on the formation of their traits. The construction of the model is based on the hierarchy of manifestation of productivity traits in ontogenesis and the correspondence of their manifestation in organogenesis. The model consists of three modules of traits including the resulting one and double-component that reflect phenotypic implementation of the genetic formula. The resulting traits are those that have environmentally stable correlation and the highest total impact on the final resulting trait, namely, the yield. According to the results of researches of mathematical models of the influence of weather conditions on the formation of phenotypic productivity of corn hybrids of different maturity groups, both general biological regularities and group differences of trait formation have been established. Thus, the analysis of the differences between the groups of early and mid-early corn hybrids, in general reveals that their growth and development are affected to a relative extent by the amount of effective temperatures, amount of precipitation and HTC. In fact, the maturity groups studied differ insufficiently, and the main differences can be observed only in the variability of the traits studied or the closeness of their relationships with each other. However, mid hybrids respond somewhat differently to environmental factors, which allows to develop the elements of adaptive cultivation technology for each maturity group. Based on the results of cluster analysis, cluster dendrograms were created using the odd-numbered group method with the determination of Euclidean distances.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Fridah A. Mwakha ◽  
Bernard M. Gichimu ◽  
Johnstone O. Neondo ◽  
Peter K. Kamau ◽  
Eddy O. Odari ◽  
...  

Slender leaf (Crotalaria spp) is among the indigenous and underutilized vegetables in Kenya whose production is limited to the Western and Coastal regions of the country. For a long time, this crop has been neglected in terms of research and genetic improvement. There is therefore scanty information on its morphological diversity and agronomic performance, hence the need for this study. Field experiments were carried out for two seasons in October to December 2018 and March to May 2019. The experiments were laid out in Randomized Complete Block Design with 29 accessions and replicated three times. Both qualitative and quantitative data were recorded from the accessions based on the Crotalaria descriptors. Quantitative data were subjected to analysis of variance using XLSTAT Version 2019, and accession means were separated using Student’s Newman Keuls test at 95% level of confidence. Both qualitative and quantitative data were subjected to multivariate cluster analysis, and a dendrogram was constructed using the unweighted pair-group method with arithmetic average. The principal component analysis was conducted to obtain information on the importance of the characters. Significant variation in agro-morphological traits was found within and between the two species. Cluster analysis grouped the accessions into seven major classes with a between-classes diversity of 75.13% and a within-classes diversity of 24.87%. This study sets the basis for genetic improvement of slender leaf in Kenya since the observed diversity can be exploited in selection for intraspecific and interspecific hybridization.


2020 ◽  
pp. 28-47
Author(s):  
Vitalii Palamarchuk ◽  
Oleksii Alieksieiev

The article presents the results of mathematical modeling based on the construction and usage of different images of an object, process or system. The research expected to study the dependence of the productivity level and the economically valuable features of corn hybrids in the form of mathematical models. Field studies were carried out during 2011-2017 at the field of research of the Department of Plant, Selection and Bioenergy Crops of SE EF “Kordelivske” of IP NAASU of Vinnytsia National Agrarian University under the conditions of the Forest-Steppe of the Right-Bank, in accordance with the recommendations presented in the Methodology Of The Maize Field Study. The soils in the study variants are represented by black earth soil of deep medium loamy on the loessial soil. The humus content (according to Tiurin) in the tilth soil was 4.60%. Soil reaction - pH (salt) 5.7. The soils contain lightly hydrolyzed nitrogen (according to Kornfield) 106 mg per 1 kg of soil, mobile phosphorus and exchangeable potassium (according to Chirikov) 186 and 160 mg per 1 kg of soil, respectively. The experiments established the economic and biological evaluation of corn hybrids depending on the sowing period, the size of the fraction and the depth of seed wrapping, foliar fertilizers by micro fertilizers. The plot area for hybrids was 10.5 m2. Repeatability in experiments for hybrids is 3 times. Placement of plots is by the method of randomized blocks. An ecological-genetic model of quantitative features was used to study the phenotypic productivity of maize hybrids and to establish the influence on the formation of their traits. The model construction is based on the hierarchy of production traits demonstration in ontogeny and the correspondence of their manifestation in organogenesis. The model consists of three modules of features, i.e. the resultant and two components which reflecting the phenotypic implementation of the genetic formula. Resulting features are those that have an environmentally stable relationships and the highest total contribution to the intended property, yield. As a result of the conducted research, the mathematical models of the duration of the growing season of early-maturing maize hybrids allowed us to determine that the biggest influence does sums of effective temperatures (≥ + 10° C) for May, June, August and September over correlation rate at r = -0.62 and r = -0.51, r = 0.59 and r = 0.39, respectively. Also precipitation amount significantly influenced on the duration of the growing season and the correlation coefficient was r = -0.44, and the influence of the HTI was at the level of r = -0.34. For middle-early hybrids the sum of effective temperatures (≥ + 10° C) in May and June r = -0.46 and r = -0.28, respectively, and also the sum of effective temperatures (≥ + 10° C) in August – r = 0.18 had a strong effect. However, for medium-maturing maize hybrids, the duration of the growing season was determined by the sum of effective temperatures (≥ + 10° C) for May, June and July – r = -0.37, r = -0.34 and r = -0.28, and the sum of effective temperatures (≥ + 10° C) in August – r = 0,18. It is also possible to note the influence and the total sum of effective temperatures (≥ + 10° C) during vegetation at the level of correlation coefficient r = -0.51. According to the research results of mathematical models of the influence of weather conditions on the formation of phenotypic productivity of maize hybrids of different maturity groups both general biological regularities and group differences of features formation were established. Thus, if we analyze the differences between groups of early-ripening and middle-early corn hybrids, their growth and development in general are influenced by the sum of the effective temperatures, rainfall and HTI. In fact, the studied groups of ripeness differ slightly and the main differences are observed only in the variability of the studied features or their close relationship with each other. However, middle-aged hybrids respond somewhat differently to environmental factors, which allow developing the elements of adaptive growing technology for each of the maturity groups. Key words: corn, hybrid, phenotype, mathematical model, productivity, economic and valuable features.


2018 ◽  
Vol 1 (94) ◽  
pp. 38-44
Author(s):  
А.M. Malienkо ◽  
N.E. Borуs ◽  
N.G. Buslaeva

In the article, the results of research on the methodology for conducting studies with corn culture under various methods of sowing and weather conditions. The aim of the research was to establish and evaluate the reliability and high accuracy of the experiment, with a decrease in the area's acreage and taking one plant per repetition. Based on the results of the analysis of biometric parameters and yields, the possibility of sampling from 5 to 108 plants was established statistically and mathematically to establish the accuracy of the experiment. The established parameters of sites in experiments with maize indicate the possibility of obtaining much more information from a smaller unit of area, that is, to increase labor productivity not only with tilled crops. This is the goal of further scientific research with other field crops taking 1 plant of repetitions, observing the conditions of leveling the experimental plot according to the fertility of the soil and sowing seeds with high condition. The data obtained give grounds for continuing research on the minimum space required and the sample in the experiments.


Author(s):  
V. Polyakov ◽  

The article presents the results of research on the formation of corn yield for grain depending on the elements of cultivation technology in the Forest-Steppe of Ukraine. The goal of the research was to identify the influence of plant density and fertilizer system on the yield of corn hybrids for grain. The research was conducted during 2017-2019 in the research field of Bila Tserkva National Agrarian University (Bila Tserkva NAU). Research methods: field, calculation and statistical. Results. Regularities of growth, development and formation of yield by plants are revealed, both in concrete conditions of years of researches, and taking into account average long-term values taking into account features of hybrid-oriented technology. According to the results of the experiment it was recorded that the maximum yields for growing early-maturing maize hybrid DN PIVYHA with FAO 180 in general were obtained at a pre-harvest density of 75 thousand units/ha and the use of combined organo-mineral fertilizer system - 11.09 t/ha; medium-early maize hybrid DN ORLYK, FAO 280 in general in the experiment provided a grain yield of 9.60 t/ha, and in terms of 2017 - 7.86 t/ha, in 2018 - 11.22 t/ha and in 2019 - 9, 72 t/ha, but the medium-ripe hybrid of corn DN SARMAT, FAO 380 provided a grain yield of 10.81 t/ha, and in the context of 2017 - 9.31 t/ha, in 2018 - 11.68 t/ha and in 2019 - 11.44 t/ha. Significant influence on the formation of the yield of corn has a hybrid factor (27 %), fertilizer system determines the level of productivity by 21 % and interacts closely with the conditions of the growing season (factor BV 9 %), growing season conditions also determine the level of productivity of corn plants (19 %), and the pre-harvest density determines this feature by 18 %. Conclusions: In the conditions of the Right Bank part of the Forest-Steppe of Ukraine there is an increase in the level of productivity of maize hybrids from early to medium-ripe hybrids, regardless of the influence of other experimental factors.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


Author(s):  
L. S. Sampaio ◽  
R. Battisti ◽  
M. A. Lana ◽  
K. J. Boote

Abstract Crop models can be used to explain yield variations associated with management practices, environment and genotype. This study aimed to assess the effect of plant densities using CSM-CROPGRO-Soybean for low latitudes. The crop model was calibrated and evaluated using data from field experiments, including plant densities (10, 20, 30 and 40 plants per m2), maturity groups (MG 7.7 and 8.8) and sowing dates (calibration: 06 Jan., 19 Jan., 16 Feb. 2018; and evaluation: 19 Jan. 2019). The model simulated phenology with a bias lower than 2 days for calibration and 7 days for evaluation. Relative root mean square error for the maximum leaf area index varied from 12.2 to 31.3%; while that for grain yield varied between 3 and 32%. The calibrated model was used to simulate different management scenarios across six sites located in the low latitude, considering 33 growing seasons. Simulations showed a higher yield for 40 pl per m2, as expected, but with greater yield gain increments occurring at low plant density going from 10 to 20 pl per m2. In Santarém, Brazil, MG 8.8 sown on 21 Feb. had a median yield of 2658, 3197, 3442 and 3583 kg/ha, respectively, for 10, 20, 30 and 40 pl per m2, resulting in a relative increase of 20, 8 and 4% for each additional 10 pl per m2. Overall, the crop model had adequate performance, indicating a minimum recommended plant density of 20 pl per m2, while sowing dates and maturity groups showed different yield level and pattern across sites in function of the local climate.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1161
Author(s):  
Roland Gerhards ◽  
Fructueuse N. Ouidoh ◽  
André Adjogboto ◽  
Vodéa Armand Pascal Avohou ◽  
Berteulot Latus Sètondji Dossounon ◽  
...  

Although clear evidence for benefits in crop production is partly missing, several natural compounds and microorganisms have been introduced to the market as biostimulants. They are supposed to enhance nutrient efficiency and availability in the rhizosphere, reduce abiotic stress, and improve crop quality parameters. Biostimulants often derive from natural compounds, such as microorganisms, algae, and plant extracts. In this study, the commercial plant extract-based biostimulant ComCat® was tested in two field experiments with maize in the communities of Banikoara and Matéri in Northern Benin and six pot experiments (four with maize and two with winter barley) at the University of Hohenheim in Germany. Maize was grown under nutrient deficiency, drought, and weed competition, and winter barley was stressed by the herbicide Luximo (cinmethylin). ComCat® was applied at half, full, and double the recommended field rate (50, 100, and 200 g ha−1) on the stressed and unstressed control plants as leaf or seed treatment. The experiments were conducted in randomized complete block designs with four replications. The above-ground biomass and yield data of one experiment in Benin were collected. The biostimulant did not promote maize and winter barley biomass production of the unstressed plants. When exposed to stress, ComCat@ resulted only in one out of eight experiments in higher barley biomass compared to the stressed treatment without ComCat® application. There was a reduced phytotoxic effect of cinmethylin after seed treatment with ComCat®. Crop response to ComCat® was independent of the application rate. Basic and applied studies are needed to investigate the response of crops to biostimulants and their mechanisms of action in the plants before they should be used in practical farming.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


2008 ◽  
Vol 88 (4) ◽  
pp. 451-460 ◽  
Author(s):  
M A Bolinder ◽  
O. Andrén ◽  
T. Kätterer ◽  
L -E Parent

The potential for storage of atmospheric CO2-C as soil organic C (SOC) in agroecosystems depends largely on soil biological activity and the quantity and quality of annual C inputs to soil. In this study we used the Introductory Carbon Balance Model (ICBM) approach driven by daily standard weather station data, specific soil properties and crop characteristics at the scale of Canadian agricultural ecoregions. The objectives were to calculate a climate-dependent soil biological activity parameter representative for annual agricultural crop production systems (re_crop) and to estimate the effect of fallow (re_fallow). These parameters are based on the daily product of soil temperature and stored water that influence biological activity in the arable layer, and are used to adjust the decomposition rates of the ICBM SOC pools. We also tested re_crop and re_fallow on SOC stock change data for different site and treatment combinations from long-term field experiments located in some of the ecoregions. An re_crop value of 0.95 for western ecoregions was on average 0.23 units lower than that of the eastern ecoregions, indicating a lower decomposition rate of SOC. Although the estimated annual C inputs to soil for small-grain cereals were on average ≈7.5% higher in the eastern ecoregions (305 vs. 285 g C m-2 yr-1), the overall results suggest that the western ecoregions would have a greater potential to maintain high SOC levels in the long term. However, these parameters varied between ecoregions and, consequently, the SOC sequestration potential was not always higher for the western ecoregions. The effect of fallow was on average ≈0.04, i.e., SOC decomposed slightly faster under fallow. Predictions for 24 out of 33 site and treatment combinations across Canada were significantly improved (P = 0.003), compared with a previous application with the ICBM that did not differentiate between crops and fallow. The methodology used here enabled us to examine regional differences in the potential for SOC sequestration as a balance between annual C inputs to soil and soil biological activity. Key words: Annual C inputs, climate, fallow, soil biological activity, agroecosystems


2018 ◽  
Vol 12 (4) ◽  
pp. 45-49
Author(s):  
Валерий Чибис ◽  
Valeriy Chibis ◽  
Светлана Чибис ◽  
Svetlana Chibis ◽  
Илья Кутышев ◽  
...  

In a long-term places, located on the experimental fields of Siberian Research Institute of Agriculture (Omsk), the schemes of field crop rotations were modernized by introducing oil crops (rapeseed, soybean) into rotation and replacing the repeated wheat crops with barley and oats. Accounting of grain crops productivity and accompanying observations were carried out in three field rotations of different lengths of rotation (four- and five-field) and on permanent sowing. The repetition of the experiments is fourfold. The system of agrotechnical measures recommended for the zone of the forest-steppe of Western Siberia was applied. The study of predecessors in the cultivation of crops for various purposes was carried out in field experiments using conventional methods. The humus content for rotation in the soil layer of 0-40 cm increased by 0.19% in the crop rotation “rapeseed - wheat spring wheat - barley - soybean - spring wheat”. The largest accumulation of humus (0.83%) was in the rotation “soybean - spring wheat - barley – oats”. During the years of research wheat productivity varied from 0.82 to 2.22 tons per hectare. Wheat was the first crop in all its predecessors to form grains, on average, by 0.3-0.5 tons per hectare, than the second crop. The yield of soybeans in the crop rotation was 1.23-1.78 tons per hectare. The productivity of rapeseed was low, its productivity over the years was 1.31 tons per hectare. Grain-fodder crops (barley, oats) averaged 0.4-0.6 tons per hectare, higher than the spring wheat productivity in the alternating rotation. The maximum yield of grain from a hectare of arable land was noted in the crop-steam rotation and amounted to 1.7 tons. An increase in the yield of feed-protein units was observed in crop rotations saturated with oil crops (rapeseed and soybean) and amounted to 3.4-4.0 tons per hectare. The economic calculation showed that the cultivation of field crops in the rotational crop rotation of “soybean - wheat - barley – oats” increased profitability by 44%, net income - by half, in comparison with the control variant. The obtained materials can be used to develop schemes of field crop rotations for the zone of the forest-steppe of Western Siberia.


Sign in / Sign up

Export Citation Format

Share Document