scholarly journals Potential of Tithonia diversifolia Hemsley A. Gray (Kembang Bulan) Leaf Extract as Anti-Cancer Agents

2021 ◽  
Vol 10 (2) ◽  
pp. 87-91
Author(s):  
Muflihah Rizkawati

The main objective of this review is to explain the great potential of herbal plants as anticancer agents. Cancer is a disease caused by abnormal cell growth in the body. The high number of cancer incidents still become a global concern because of the high mortality rate. The treatments of cancer such as chemotherapy can cause serious side effects by killing the normal cells. This is the reason why it is necessary to develop an alternative treatment of cancer. I discussed a plant that is believed to has health benefit. Many studies have showed the positive effect of Tithonia diversifolia plant for health. After 2000, the researchers discovered a new potential through its cytotoxicity to neoplastic cells. This plant needs to be developed sustainably. However, in the future this plant might become an effective alternative to treat cancer with lower side effects.

2019 ◽  
Vol 19 (9) ◽  
pp. 1080-1102 ◽  
Author(s):  
Ghansham S. More ◽  
Asha B. Thomas ◽  
Sohan S. Chitlange ◽  
Rabindra K. Nanda ◽  
Rahul L. Gajbhiye

Background & Objective: :Nitrogen mustard derivatives form one of the major classes of anti-cancer agents in USFDA approved drugs list. These are polyfunctional alkylating agents which are distinguished by a unique mechanism of adduct formation with DNA involving cross-linking between guanine N-7 of one strand of DNA with the other. The generated cross-linking is irreversible and leads to cell apoptosis. Hence it is of great interest to explore this class of anticancer alkylating agents.Methods::An exhaustive list of reviews, research articles, patents, books, patient information leaflets, and orange book is presented and the contents related to nitrogen mustard anti-cancer agents have been reviewed. Attempts are made to present synthesis schemes in a simplified manner. The mechanism of action of the drugs and their side effects are also systematically elaborated.Results::This review provides a platform for understanding all aspects of such drugs right from synthesis to their mechanism of action and side effects, and lists USFDA approved ANDA players among alkylating anticancer agents in the current market.Conclusion: :Perusing this article, generic scientists will be able to access literature information in this domain easily to gain insight into the nitrogen mustard alkylating agents for further ANDA development. It will help the scientific and research community to continue their pursuit for the design of newer and novel heterocyclic alkylating agents of this class in the coming future.


2018 ◽  
Vol 16 (1) ◽  
pp. 78-91 ◽  
Author(s):  
Mateusz Pięt ◽  
Roman Paduch

Background:Cancer is one of the main causes of death worldwide. Contemporary therapies, including chemo- and radiotherapy, are burdened with severe side effects. Thus, there exists an urgent need to develop therapies that would be less devastating to the patient’s body. Such novel approaches can be based on the anti-tumorigenic activity of particular compounds or may involve sensitizing cells to chemotherapy and radiotherapy or reducing the side-effects of regular treatment.Objective:Natural-derived compounds are becoming more and more popular in cancer research. Examples of such substances are Ursolic Acid (UA) and Oleanolic Acid (OA), plant-derived pentacyclic triterpenoids which possess numerous beneficial properties, including anti-tumorigenic activity.Results:In recent years, ursolic and oleanolic acids have been demonstrated to exert a range of anticancer effects on various types of tumors. These compounds inhibit the viability and proliferation of cancer cells, prevent their migration and metastasis and induce their apoptosis. Both in vitro and in vivo studies indicate that UA and OA are promising anti-cancer agents that can prevent carcinogenesis at each step. Furthermore, cancers at all stages are susceptible to the activity of these compounds. </P><P> Neoplasms that are formed in the gastrointestinal tract, i.e. gastric, colorectal, pancreatic, and liver cancers, are among the most common and most lethal malignancies. Their localization in the digestive system, however, facilitates the action of orally-administered (potential) anti-cancer agents, making chemopreventive drugs more accessible.In this paper, the anti-tumorigenic effect of ursolic and oleanolic acids on gastric, colon, pancreatic, and liver cancers, as well as the mechanisms underlying this process, are presented.


2013 ◽  
Vol 169 (6) ◽  
pp. R153-R164 ◽  
Author(s):  
Francesco Torino ◽  
Agnese Barnabei ◽  
Rosa Maria Paragliola ◽  
Paolo Marchetti ◽  
Roberto Salvatori ◽  
...  

mAbs are established targeted therapies for several diseases, including hematological and solid malignancies. These agents have shown a favorable toxicity profile, but, despite their high selectivity, new typical side-effects have emerged. In cancer patients, pituitary dysfunction may be mainly due to brain metastases or primary tumors and to related surgery and radiotherapy. Anticancer agents may induce hypopituitarism in patients cured for childhood cancers. These agents infrequently affect pituitary function in adult cancer patients. Notably, hypophysitis, a previously very rare disease, has emerged as a distinctive side-effect of ipilimumab and tremelimumab, two mAbs inhibiting the cytotoxic T-lymphocyte antigen-4 receptor, being occasionally seen with nivolumab, another immune checkpoint inhibitor. Enhanced antitumor immunity is the suggested mechanism of action of these drugs and autoimmunity the presumptive mechanism of their toxicity. Recently, ipilimumab has been licensed for the treatment of patients affected by metastatic melanoma. With the expanding use of these drugs, hypophysitis will be progressively encountered by oncologists and endocrinologists in clinical practice. The optimal management of this potentially life-threatening adverse event needs a rapid and timely diagnostic and therapeutic intervention. Hypopituitarism caused by these agents is rarely reversible, requiring prolonged or lifelong substitutive hormonal treatment. Further studies are needed to clarify several clinical and pathogenic aspects of this new form of secondary pituitary dysfunction.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Katrin Sak

Chemotherapy has been used for cancer treatment already for almost 70 years by targeting the proliferation potential and metastasising ability of tumour cells. Despite the progress made in the development of potent chemotherapy drugs, their toxicity to normal tissues and adverse side effects in multiple organ systems as well as drug resistance have remained the major obstacles for the successful clinical use. Cytotoxic agents decrease considerably the quality of life of cancer patients manifesting as acute complaints and impacting the life of survivors also for years after the treatment. Toxicity often limits the usefulness of anticancer agents being also the reason why many patients discontinue the treatment. The nutritional approach may be the means of helping to raise cancer therapy to a new level of success as supplementing or supporting the body with natural phytochemicals cannot only reduce adverse side effects but improve also the effectiveness of chemotherapeutics. Various plant-derived compounds improve the efficiency of cytotoxic agents, decrease their resistance, lower and alleviate toxic side effects, reduce the risk of tumour lysis syndrome, and detoxify the body of chemotherapeutics. The personalised approach using various phytochemicals provides thus a new dimension to the standard cancer therapy for improving its outcome in a complex and complementary way.


2020 ◽  
Vol 92 (8) ◽  
pp. 1201-1216
Author(s):  
Elena R. Milaeva ◽  
Dmitry B. Shpakovsky ◽  
Yulia A. Gracheva ◽  
Taisiya A. Antonenko ◽  
Tatyana D. Ksenofontova ◽  
...  

AbstractCancer is one of the most common causes of death in modern medicine. Molecular design of novel substances with pharmacological activity is one of the goals of medicinal inorganic chemistry. Platinum complexes are widely used in the treatment of cancer, despite high efficacy their use is limited by side effects, as well as primary or acquired resistance. In this regard, the search for novel metal-containing antitumor compounds is underway. Organotins and gold compounds are promising pharmacological agents with anti-cancer properties. The introduction of protective antioxidant fragments into inorganic compounds molecules is a way to reduce the side effects of anti-cancer drugs on healthy cells. 2,6-dialkylphenols belonging to vitamin E (α-tocopherol) mimetics are widely used as antioxidants and stabilizers. The properties of Ph3SnCl (Sn-I), Ph3PAuCl (Au-I) and complexes Ph3SnSR (Sn-II) and Ph3PAuSR (Au-II) based on 2,6-di-tert-butyl-4-mercaptophenol (RSH) as radical scavengers and reducing agents were studied in model reactions. For Sn-II and Au-II the comparative study of cytotoxic action was made and the IC50 values on different cancer cell lines were found to be depended on the nature of metal. In general, Sn(IV) complexes possessed higher cytotoxicity than Au(I) complexes. In order to clarify the mechanism of cytotoxic mode of action the effect of compounds on Fe3+-induced lipid peroxidation, mitochondrial potential and mitochondrial permeability, cell cycle and induction of apoptosis was studied. Organotin compounds can bind tubulin SH-groups and inhibit its polymerization by a dose-dependent mechanism, whereas gold compounds inhibit Thioredoxin reductase (TrxR). In vivo experiments on acute toxicity of Sn-II and Au-II proved their moderate toxic action that opens prospects for the further study as antitumor agents.


2020 ◽  
Vol 20 (18) ◽  
pp. 2150-2168 ◽  
Author(s):  
Damanpreet K. Lang ◽  
Rajwinder Kaur ◽  
Rashmi Arora ◽  
Balraj Saini ◽  
Sandeep Arora

Background: Cancer is spreading all over the world, and it is becoming the leading cause of major deaths. Today’s most difficult task for every researcher is to invent a new drug that can treat cancer with minimal side effects. Many factors, including pollution, modern lifestyle and food habits, exposure to oncogenic agents or radiations, enhanced industrialization, etc. can cause cancer. Treatment of cancer is done by various methods that include chemotherapy, radiotherapy, surgery and immunotherapy in combination or singly along with kinase inhibitors. Most of the anti-cancer drugs use the concept of kinase inhibition. Objective: The number of drugs being used in chemotherapy has heterocycles as their basic structure in spite of various side effects. Medicinal chemists are focusing on nitrogen-containing heterocyclic compounds like pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimidazole, etc. as the key building blocks to develop active biological compounds. The aim of this study is to attempt to compile a dataset of nitrogen-containing heterocyclic anti-cancer drugs. Methods: We adopted a structural search on notorious journal publication websites and electronic databases such as Bentham Science, Science Direct, PubMed, Scopus, USFDA, etc. for the collection of peer-reviewed research and review articles for the present review. The quality papers were retrieved, studied, categorized into different sections, analyzed and used for article writing. Conclusion: As per FDA databases, nitrogen-based heterocycles in the drug design are almost 60% of unique small-molecule drugs. Some of the nitrogen-containing heterocyclic anti-cancer drugs are Axitinib, Bosutinib, Cediranib, Dasatanib (Sprycel®), Erlotinib (Tarceva®), Gefitinib (Iressa®), Imatinib (Gleevec®), Lapatinib (Tykerb ®), Linifanib, Sorafenib (Nexavar®), Sunitinib (Sutent®), Tivozanib, etc. In the present review, we shall focus on the overview of nitrogen-containing heterocyclic active compounds as anti-cancer agents.


Objective: In this review, we highlight the importance of an optimal nutrient status to strengthen the immune system during the COVID-19 crisis, focusing on the most relevant constituents that reduce inflammation and Provide a holistic perspective nutritional therapy the new coronavirus (covid-19) to assist researchers and improving areas for future response plans to deal with these diseases, and to provide a summary of the nutrients that help stop their development. Methods: This is a theoretical study conducted through a comprehensive review of the literature and research in the research engines (PubMed), (Read) and (ELSEVIER) and other new studies published in Chinese; we obtained information nutritional treatment who contributed to increasing the immunity of patients, due to the lack of treatment for this disease. Results: Until now no effective drug for the treatment of new coronavirus, pneumonia (covid-19) has been found. The development of vaccines is still in animal experiments. Recommendations and measures to control the spread of infection and nutritional therapy are still the only way to prevent the spread of covid-19 virus. Because, People relied only on treatments that were effective on previous viruses, for example those that have been used during the SARS and MERS epidemics. Discussion: The Covid-19 virus remains a global concern and more research is needed to control it. In addition, people need to know the nutrition ingredients that have a positive effect on increasing the immunity of the human body.


2020 ◽  
pp. 66-72
Author(s):  
A. Khisamova ◽  
O. Gizinger

In the modern world, where a person is exposed to daily stress, increased physical exertion, the toxic effect of various substances, including drugs. The task of modern science is to find antioxidants for the body. These can be additives obtained both synthetically and the active substances that we get daily from food. Such a striking example is turmeric, obtained from the plant Curcuma longa. Recently, it has been known that curcumin has an antioxidant, anti-inflammatory, anti-cancer effect and, thanks to these effects, plays an important role in the prevention and treatment of various diseases, in particular, from cancer to autoimmune, neurological, cardiovascular and diabetic diseases. In addition, much attention is paid to increasing the biological activity and physiological effects of curcumin on the body through the synthesis of curcumin analogues. This review discusses the chemical and physical characteristics, analogues, metabolites, the mechanisms of its physiological activity and the effect of curcumin on the body.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


2019 ◽  
Vol 25 (34) ◽  
pp. 3608-3619 ◽  
Author(s):  
Uzma Arif ◽  
Sajjad Haider ◽  
Adnan Haider ◽  
Naeem Khan ◽  
Abdulaziz A. Alghyamah ◽  
...  

Background: Biocompatible polymers are gaining great interest in the field of biomedical applications. The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the body. A biocompatible polymer improves body functions without altering its normal functioning and triggering allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial grafts, wound fabrication, controlled drug delivery, bone filler material, etc. Objectives: This review provides an insight into the remarkable contribution made by some well-known biopolymers such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many biomedical applications. Methods: : Various techniques and methods have made biopolymers more significant in the biomedical fields such as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques, controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering etc. Results: The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility, nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and minimized side effects that would occur if synthetic polymers are used in a host cell. Conclusion: Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.


Sign in / Sign up

Export Citation Format

Share Document