scholarly journals Assessment of Selected Physical Characteristics of the English Ryegrass (Lolium Perenne L.) Waste Biomass Briquettes

2019 ◽  
Vol 23 (4) ◽  
pp. 21-30
Author(s):  
Artur Kraszkiewicz ◽  
Ignacy Niedziółka ◽  
Stanisław Parafiniuk ◽  
Maciej Sprawka ◽  
Małgorzata Dula

AbstractThe aim of the study was to assess the selected physical characteristics of the briquettes of English ryegrass waste biomass and its mixtures with waste components from the agri-food industry: pea husks and oat middlings. The raw materials used for the tests are characterized by high calorific value and low ash content. Among the tested raw materials, the most favorable values were recorded for oat middlings in this respect. The produced briquettes were characterized by high volumetric density and very diverse mechanical durability. At the same time, the results of the tests on the mechanical durability of briquettes indicated that the use of components of ryegrass mixtures selected for testing brought unsatisfactory results, as compared to other analyzed physical and energy features.

2014 ◽  
Vol 1001 ◽  
pp. 114-117 ◽  
Author(s):  
Emília Hroncová ◽  
Juraj Ladomerský

In recent years, research has shown the advisability of seeking new types of biofuel. It has been shown that apart from one-component fuel, it is also advisable to use mixtures composed of basic raw materials. These mixtures may have a favourable effect upon the overall recovery of such fuels. This paper focuses upon options for the energy use of various mixtures of biomass waste. Biomass waste originates from primary agricultural production and countryside maintenance. This mainly consists of plant residues, i.e. straw and hay. Pellets were made using the given biomass. The pellets were prepared by mixing plant residues with spruce shavings as well as from pure materials, i.e. wheat straw, hay and sawdust. Individual types of biomass were mixed in various ratios: 50% wheat straw + 50% hay, 50% wheat straw + 50% sawdust, 50% hay + 50% sawdust, 33% wheat straw + 33% hay + 33% sawdust. The following basic parameters of the prepared samples were monitored: humidity, calorific value and ash content. These parameters influence the environmental as well as economic aspects of options for using these plant residues as fuel. It was discovered during the tests that the highest calorific value was achieved using a sample of biomass prepared by mixing 50% straw and 50% hay. The highest humidity was found in a sample of sawdust and the highest ash content in a sample prepared by mixing 50% straw and 50% hay.


2021 ◽  
Vol 16 (2) ◽  
pp. 170-180
Author(s):  
Widia Istiani ◽  
Evi Sribudiani ◽  
Sonia Somadona

Utilization of biomass as biopellet is a solution for the creation of renewable alternative energy. So that a research was conducted on the manufacture of biopellets from waste shells of candlenut (Aleurites moluccana) with a mixture of waste biomass from sago stems (Metroxylon sago) and sawdust. This study aims to determine the quality and determine the composition of the best raw materials in biopellets. This study used a completely randomized design (CRD) method with four treatments and five replications. The raw materials are dried for 3 days, then mashed and filtered, then the raw materials are mixed with adhesive and printed, the last parameter is tested. The results showed that the water content, calorific value, and volatile matter content of the biopellet met the SNI standard. 8021:2014. However, in the density and ash content test, the biopellet did not meet the SNI 8021:2014 standard. The best biopellet composition was obtained in treatment P2 with the addition of 10% of the total weight of biomass with a moisture content of 9.96%, density 0.31g/cm3, calorific value 4.232 cal/g, and ash content 11.3%, and volatile matter content of 73 ,69%


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Michał Rejdak ◽  
Jolanta Robak ◽  
Agata Czardybon ◽  
Karina Ignasiak ◽  
Piotr Fudała

This paper presents the partial results of a study on obtaining compacted fuel from fine-grained coal fractions and biomass. The aim of the study was to determine the impact of selected parameters of the extrusion process and the applied binder (mechanical durability and density of the products). The fuels were formulated using the extrusion process. Raw materials used in the research were: Fine-grained coal (flotation concentrates), biomass (hydrolytic lignocellulose), and a wide spectrum of organic and mineral binders and their compositions. During the investigations, the variable factors were the following: Extrusion pressure, preparation of the mixtures for extrusion (mixing time and temperature of the mixture), composition of the extruded mixtures (share of fine-grained coal and biomass and type of binder). It was found that it is possible to extrude mechanically durable briquettes from mixtures containing fine-grained coal products and biomass. Under the conditions of the experiment, the most favorable mechanical durability was characterized by briquettes containing in their composition 90% of coal and 6% of biomass (in relation to the dry state). The briquettes with the most favorable physico-mechanical properties were obtained using organic binders—Starch (based on wheat and potato starch) and cellulose derivatives.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2186 ◽  
Author(s):  
Anna Brunerová ◽  
Hynek Roubík ◽  
Milan Brožek

The present study deals with the issue of bio-briquette fuel produced from specific agriculture residues, namely bamboo fiber (BF) and sugarcane skin (SCS). Both materials originated from Thừa Thiên Huế province in central Vietnam and were subjected to analysis of their suitability for such a purpose. A densification process using a high-pressure briquetting press proved its practicability for producing bio-briquette fuel. Analysis of fuel parameters exhibited a satisfactory level of all measured quality indicators: ash content Ac (BF—1.16%, SCS—8.62%) and net calorific value NCV (BF—16.92 MJ∙kg−1, SCS—17.23 MJ∙kg−1). Equally, mechanical quality indicators also proved satisfactory; bio-briquette samples’ mechanical durability DU occurred at an extremely high level (BF—97.80%, SCS—97.70%), as did their bulk density ρ (BF—986.37 kg·m−3, SCS—1067.08 kg·m−3). Overall evaluation of all observed results and factors influencing the investigated issue proved that both waste biomass materials, bamboo fiber and sugarcane skin, represent suitable feedstock materials for bio-briquette fuel production, and produced bio-briquette samples can be used as high-quality fuels.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3035
Author(s):  
Roxana Gheorghita Puscaselu ◽  
Liliana Anchidin-Norocel ◽  
Ancuţa Petraru ◽  
Florin Ursachi

Currently, the problem of pollution due to plastic waste is a major one. The food industry, and especially that of meat and meat products, is intensely polluting, both due to the raw materials used and also to the packaging materials. The aim of the present study was to develop, test, and characterize the biopolymeric materials with applications in the meat industry. To obtain natural materials which are completely edible and biodegradable, different compositions of agar, sodium alginate, water and glycerol were used, thus obtaining 15 films. The films were tested to identify physical properties such as smell, taste, film uniformity and regularity of edges, microstructure, color, transmittance, and opacity. These determinations were supplemented by the evaluation of mechanical properties and solubility. According to the results obtained and the statistical interpretations, three films with the best results were used for packing the slices of dried raw salami. The salami was tested periodically for three months of maintenance in refrigeration conditions, and the results indicate the possibility of substituting conventional materials with the biopolymer ones obtained in the study.


Author(s):  
Magdalena DĄBROWSKA ◽  
Milena JAWOREK ◽  
Adam ŚWIĘTOCHOWSKI ◽  
Aleksander LISOWSKI

Wastes from forest and agricultural industry are still insufficiently used. One of the ways of their preprocessing is a pyrolysis process. Therefore, the aim of this study was to determine the energetic properties of biochar made of walnut shells, forest wood chips and willow chips. The studies were performed according to standards. The moisture contents of the material, the ash contents, the net and gross calorific values were determined. Low moisture and ash content were found in each of the biochar species. For all tested samples the ash contents were lower than 6% and for forest wood chips it was 1.5% only. The way of processing the biomass in the pyrolysis process significantly increased the calorific value of the raw materials. It was found that the net calorific values of the tested materials were high and reached the amount of 26.58 MJ‧kg-1 for biochar made of walnut shells, 22.29 MJ‧kg-1 for biochar made of forest wood chips and 24.59 MJ‧kg-1 for biochar made of willow chips. Due to the good physical properties of biochar produced from waste and biological materials, it was found that these solid fuels can be used for energy purposes.


2019 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Anindya Husnul Hasna ◽  
J. P. Gentur Sutapa ◽  
Denny Irawati

Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood PelletAbstractThe waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.


Author(s):  
Edgars Cubars ◽  
Liena Poiša

There is a growing interest about the possibility of exploiting the local biomass as an energy source. The main resource for biofuel production in Latvia is wood. Water plants, like common reed, growing in nearly all of the water reservoirs in Latvia, and all cultivate plants and residues of cereal crops, also can be good alternative for solid bio fuels production. The aim of this paper is to analyze possibilities to make composite fuels from these recourses. The study reveals research of ash content and highest burning heat value in different composite biomass fuels. It contains analysis of samples obtained from various local Latvian biomass types, i.e. reed, wood, flax spray, hay, hemp and peat, by combining them in different proportions. The study contains optimal combining proportions of different biomass types for composite fuel production basing on the ash content and burning heat in them. The results of the study show that the value of wood highest burning heat is higher than another biomass types like reed, peat, hay, hemp and flax spray. It means that combining of different biomass types with wood, will reduce the calorific value of composite biomass. Also, wood is a fuel with a low ash content, and admixture of various biomass types available in Latvia, as well as admixture of coal dust to the wood in composite duels, increases ash content in the respective fuels. In order to increase the burning heat and decrease ash content value to the optimal level and to diversify raw materials necessary for biomass fuel generating process, the authors analyze possibilities of using composite fuels by combining wood and coal dust.


2017 ◽  
Vol 4 (2) ◽  
pp. 166
Author(s):  
Nabila Ukhty ◽  
Anhar Rozi ◽  
Andiani Sartiwi

Terasi is a product of fermentation-based on rebon or fish with the addition of salt. Fermentation with salt led to an overhaul of proteins into amino acids eg glutamic acid as a producer of distinctive taste shrimp paste. Raw material, salt concentration and fermentation time is an important factor in the process of making paste. This study aimed to analyze the effect of different formulations of rebon (Acetes sp) and HTS generated against chemical quality paste. Raw materials used in this study is rebon (Acetes sp.) and fish HTS. Treatment used is the difference rebon formulation composition of fish and meat. Research methods using the experimental method with descriptive design field. Parameters tested include moisture content, ash content, fat content, protein, carbohydrates, pH, and glutamic acid. Based on the results obtained paste with the best formulation of the paste P1 treatment with a water content of 15.48%, 39.52% ash content, the fat content of 7.23%, 42.50% protein content, carbohydrate content of 4.73%, pH 5 , 67%, and 22.56% glutamic acid.


Sign in / Sign up

Export Citation Format

Share Document