Effect of different soils and pH amendments on brown-rot decay activity in a soil block test

Holzforschung ◽  
2010 ◽  
Vol 64 (5) ◽  
Author(s):  
Nathan S. Little ◽  
Tor P. Schultz ◽  
Darrel D. Nicholas

Abstract The soil block test is the most widely employed laboratory method for determination of biocide efficacy in North America. However, surprisingly little is known about the effect of different soil properties and soil amendments on fungal decay. Four soils with different textures and chemical properties were obtained and characterized. These soils, with and without pH amendments, were submitted to one soil block decay study using untreated southern pine wood and two brown-rot fungi. A second study examined the effect of adding water-soluble calcium chloride to soils, or directly to wood, on brown-rot decay. Based on the results of the first study with a limited number of soils, changes in the specified properties of the soil are suggested. Generally, fungal decay was reduced by raising the soil pH for acidic soils by hydrated lime as specified in the standards, or by adding water-soluble acidic calcium chloride to basic soils.

Holzforschung ◽  
2017 ◽  
Vol 71 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Xiaowen Ge ◽  
Lihai Wang ◽  
Jiejian Hou ◽  
Binbin Rong ◽  
Xiaoquan Yue ◽  
...  

Abstract The effects of brown-rot decay on the mechanical and chemical properties of poplar (Populus cathayana Rehd.) wood were investigated, while the correlation of several properties to the decay degree and to each other were quantified. During the decay process, the losses in impact bending strength (IBS) and modulus of rupture (MOR) increased logarithmically with the degree of decay, whereas the losses in modulus of elasticity (MOE) and compressive strength parallel to grain (CS∥) increased slowly with linear trends. The ranking of the four mechanical parameters for the response speed to decay and the degree of the influence of decay were IBS>MOR>MOE>CS∥. Hemicelluloses were preferably decomposed by the brown-rot fungus. The prominent degradation of cellulose began from a weight loss (WL) of 18.7%, where the relative crystallinity decreased. In summary, the degradation of hemicelluloses caused a fast and significant decrease in IBS while the subsequent removal of paracrystalline cellulose resulted in MOR loss. The variation of MOE was in correlation with the cellulose content. A decrease in CS∥ was due to the slow deterioration of crystalline cellulose.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1511
Author(s):  
Roger M. Rowell

The wood preservation industry has depended on toxicity as a mechanism of effectiveness against decay fungi to extend the life of wood used in adverse conditions. An alternative to toxicity, however, is to study and understand the mechanism of fungal attack and stop it before it can start. Knowing that fungi need moisture for colonization, a new approach to wood preservation is to lower the cell wall moisture content below that needed for fungal attack. Acetylation chemistry is known to reduce the moisture content in the cell wall, and it was used to study moisture levels in the bulk cell wall and in the isolated cell wall polymers. Resistance to brown-rot was determined using a 12-week soil block test with Gloeophyllum trabeum. Weight loss was measured and an analysis of what was lost was determined.


1970 ◽  
Vol 48 (10) ◽  
pp. 1787-1793 ◽  
Author(s):  
E. G. Kuhlman

A modified soil-block test was used to compare the bark-decomposing ability of various soil- and root-inhabiting fungi. Bark of Pinus taeda was highly resistant to decomposition by all 31 fungi tested. A brown-rot fungus, Lenzites saepiaria, caused the most weight loss, but weight losses due to decay by all fungi varied only from 3 to 15%. Isolates of Mucorales produced 3–8% weight losses from stem bark in 12 weeks. Available nutrients were used within 6 weeks; longer incubation resulted in little additional decomposition. Losses in weight from root bark and stem bark were similar, indicating little nutritional difference between these two substrates.Extraction of stem bark with ethanol or water before incubation with Fomes annosus, L. saepiaria, or Scytalidinun lignicola did not increase the amount of decomposition. This suggests that extractives in the bark may not be responsible for the slow rate of decay. Since autoclaving of the bark before incubation with the fungi enabled the fungi to cause more weight loss than did gas sterilization of the bark, the primary reason for the slow rate of decomposition by fungi is considered to be the complex molecular structure of the bark constituents.


2017 ◽  
Vol 23 (3) ◽  
pp. 350-361 ◽  
Author(s):  
Hisham Al-Obaidi ◽  
Mridul Majumder ◽  
Fiza Bari

Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Liselotte De Ligne ◽  
Jan Van den Bulcke ◽  
Jan M. Baetens ◽  
Bernard De Baets ◽  
Gang Wang ◽  
...  

AbstractThe effect of fungicidal components in wood has been known for ages, yet there is no method to assess the impact of such components on the durability of a wood species, as compared to other material characteristics that influence decay. In this paper, the importance of fungicidal effects on the natural durability of 10 wood species is assessed in relation to other decay-influencing factors with a new test, the so-called ‘paste test’. By comparing results from this test with the ‘mini-block test’, on both heartwood and leached sapwood, insight is gained into the significance of fungicidal components on the one hand and other material characteristics on the other hand. The durability of species such as Prunus avium was attributed mainly to fungicidal components. For species such as Pterocarpus soyauxii, durability seemed to be an effect of both fungicidal components and moisture-regulating components, while the latter seemed to be of main importance in regulating the decay of Aucoumea klaineana and Entandrophragma cylindricum. Wood-anatomical features, such as the parenchyma content (in case of brown rot fungi) and the vessel-fiber ratio, possibly affect degradation as well. This work shows that fungicidal components are not always of major importance for the durability of a wood species. The authors hereby emphasize the importance of moisture-regulating components and wood anatomy on the durability of wood.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2603
Author(s):  
Luana Malacaria ◽  
Giuseppina Anna Corrente ◽  
Amerigo Beneduci ◽  
Emilia Furia ◽  
Tiziana Marino ◽  
...  

This review focuses on the ability of some natural antioxidant molecules (i.e., hydroxycinnamic acids, coumarin-3-carboxylic acid, quercetin, luteolin and curcumin) to form Al(III)- and Fe(III)-complexes with the aim of evaluating the coordination properties from a combined experimental and theoretical point of view. Despite the contributions of previous studies on the chemical properties and biological activity of these metal complexes involving such natural antioxidants, further detailed relationships between the structure and properties are still required. In this context, the investigation on the coordination properties of Al(III) and Fe(III) toward these natural antioxidant molecules might deserve high interest to design water soluble molecule-based metal carriers that can improve the metal’s intake and/or its removal in living organisms.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Christian Brischke ◽  
Christian Robert Welzbacher ◽  
Andreas Otto Rapp

Abstract The suitability of a previously described high-energy multiple impact (HEMI) test for the detection of early fungal decay was examined. The HEMI test characterises the treatment severity of thermally modified wood by stressing the treated material by thousands of impacts of pounding steel balls. This method differentiates between heat treatment intensities, which are manifest as structural changes in the wood. Similar changes in wood structure are known for wood decayed by fungi. Pine (Pinus sylvestris L.) decayed by brown rot and beech (Fagus sylvatica L.) decayed by white rot were tested. Mass loss caused by fungal decay and resistance to impact milling (RIM) determined in HEMI tests were found to be highly correlated. Testing of non-degraded pine, beech, and ash (Fraxinus exelsior L.) showed only marginal effects of wood density on RIM. Furthermore, annual ring angles and RIM of spruce (Picea abies Karst.) were not correlated. Accordingly, the detection of RIM reduction in decayed wood is not masked by variations in density and orientation of the annual rings. Previous results showed no adverse effects of weathering on RIM. Thus, the detection of fungal decay with HEMI tests is feasible not only for laboratory purposes, but also for wood in outdoor applications that has already undergone weathering.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 25-33 ◽  
Author(s):  
Zahid Iqbal ◽  
Muhammad Ishaq ◽  
Adnan Aslam ◽  
Wei Gao

AbstractPrevious studies show that certain physical and chemical properties of chemical compounds are closely related with their molecular structure. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. The molecular topological indices are numerical invariants of a molecular graph and are useful to predict their bioactivity. Among these topological indices, the eccentric-connectivity index has a prominent place, because of its high degree of predictability of pharmaceutical properties. In this article, we compute the closed formulae of eccentric-connectivity–based indices and its corresponding polynomial for water-soluble perylenediimides-cored polyglycerol dendrimers. Furthermore, the edge version of eccentric-connectivity index for a new class of dendrimers is determined. The conclusions we obtained in this article illustrate the promising application prospects in the field of bioinformatics and nanomaterial engineering.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


Sign in / Sign up

Export Citation Format

Share Document