Abhängigkeit des optischen Bandabstandes von der molaren Zusammensetzung bei Zinksulfid-Kadmiumsulfid-Mischkristallen

1969 ◽  
Vol 24 (9) ◽  
pp. 1408-1410
Author(s):  
Y. Kotera ◽  
T. Serine

Abstract The optical band gap was determined for powder samples of (ZnxCd1-x) S by absorption measurements using a microspectrophotometer. Whereas the lattice constants (measured by X-ray lattice analysis) are linear functions of the components, the band gap is smaller than expected from the molar composition. The relation between band gap and composition was found to be linear, with a break at the equimolar composition. Possible reasons of this phenomen are discussed.

2021 ◽  
pp. 2100015
Author(s):  
Vegard Skiftestad Olsen ◽  
Vetle Øversjøen ◽  
Daniela Gogova ◽  
Béla Pécz ◽  
Augustinas Galeckas ◽  
...  

2021 ◽  
Author(s):  
T. Shiyani ◽  
Indrani Banerjee ◽  
Santosh K. Mahapatra ◽  
Asim K Ray

Abstract Photoelectrochemical properties have been investigated for flexible ZnO/ITO/PET photoelectrodes. ZnO was spin coated on ITO/PET substrate with thickness of about 310 nm. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4 eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. Values of 1.022 and 0.714 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels.


2010 ◽  
Vol 19 (02) ◽  
pp. 247-254 ◽  
Author(s):  
NGUYEN VAN MINH ◽  
DAO VIET THANG

Multiferroic Bi 1-x Sm x FeO 3(x = 0.00, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. X-ray diffraction measurement was carried out to characterize the crystal structure and to detect the impurities existing in these ceramics. The substitution of rare earth Sm for Bi was found to decrease the impurity phase in BiFeO 3 ceramics. There is strong evidence that both lattice constants a and c of the unit cell become smaller as the Sm 3+ content is increased. The effect of introducing Sm 3+ is shown to decrease the optical band gap for doped sample Bi 1-x Sm x FeO 3. Additionally, the temperature-dependent Raman measurement performed for the lattice dynamics study of Bi 1-x Sm x FeO 3 samples reveals a strong band centered at around 1000–1300 cm-1 which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi 1-x Sm x FeO 3 samples. This two-phonon signal is shown to broaden with increasing x. The Raman spectra at low wavenumbers are suggested to be related with magnon in this system.


2012 ◽  
Vol 534 ◽  
pp. 156-159 ◽  
Author(s):  
Dong Hua Fan ◽  
Rong Zhang ◽  
Hui Ren Peng

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV


2013 ◽  
Vol 200 ◽  
pp. 50-53
Author(s):  
Inna A. Ivashchenko ◽  
Volodumur V. Halyan ◽  
Irina V. Danylyuk ◽  
Volodumur Z. Pankevuch ◽  
Georgij Y. Davydyuk ◽  
...  

The phase diagram of the Ga2Se3–In2Se3 system was investigated by differential-thermal analysis (DTA) and X-ray diffraction (XRD) method. The single crystals from the area of existence of the γ2 phase with the compositions (Ga0.6In0.4)2Se3 and (Ga0.594In0.396Er0.01)2Se3 were grown by a vertical Bridgman method. Absorption spectra of the grown crystals were studied. The estimated optical band gap is 1.95±0. 01 eV. The resistance of the single crystals of (Ga0.6In0.4)2Se3 (R=500 MΩ) and (Ga0.594In0.396Er0.01)2Se3 (R=210 MΩ) was measured.


2021 ◽  
Author(s):  
Nejeh Hannachi ◽  
Thierry ROISNEL ◽  
Faouzi HLEL

Abstract A new non-centrosymmetricorganotin (IV) hybrid compoundC5H14N2 [SnCl6] 2H2O was determined by single crystal X-ray diffraction at 150(2) K. Its crystal structure was solved by single crystal X-ray diffraction reveling that compound crystallizes in the orthorhombic system with Pbca space group with the following lattice parameters: a = 12.1486 (15) Å, b= 15.4571 (17) Å, c = 16.7610 (18) Å with Z = 8. The bonding between inorganic and organic entities in the compounds is realized by hydrogen bonding O−H…O ,O−H…Cl , NH • • • Cl, N-H…Cl and O−H…Cl. Finally,UV-visible absorption measurements exhibit two absorption bands (226 nm and 262 nm).The optical band gap (Eg) is deduced to be 3.46 Ev.


1999 ◽  
Vol 14 (4) ◽  
pp. 1235-1237 ◽  
Author(s):  
Ernst Z. Kurmaev ◽  
Sergei N. Shamin ◽  
David L. Ederer ◽  
Ursula Dettlaff-Weglikowska ◽  
Jörg Weber

Silicon L2,3 x-ray emission spectra (XES) of siloxene powder samples prepared according to Wöohler and Kautsky (Wöhler and Kautsky siloxene) are presented. The results are compared with the Si L2,3 spectra of the reference compounds a-Si, c-Si, SiO2, and SiOx. A close similarity of the electronic structure of Wöhler siloxene to that of a-SiO0.43: H and of Kautsky siloxene to that of a-SiO0.87: H is found. We determine the number of oxygen atoms per Si atom at ~0.5 in Wöhler siloxene and ~0.8 in Kautsky siloxene. The relative concentrations are in good agreement with the results of infrared absorption measurements on the same samples.


Carbon ◽  
2020 ◽  
Vol 158 ◽  
pp. 89-96 ◽  
Author(s):  
Carmela Russo ◽  
Barbara Apicella ◽  
Antonio Tregrossi ◽  
Anna Ciajolo ◽  
Kim Cuong Le ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
E. Erasmus

Five different copper-oxide nanocrystals were prepared by colloidal synthesis to form either cubic, octahedral, rhombic dodecahedral, truncated cubic, or fluffy sphere structures. These Cu-oxide nanocrystals were characterised using scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis. The SEM images show that the Cu2O nanocrystals are relatively uniform and all the crystals have a particle mean diameter below 1000 nm. The smallest particle mean diameter is 411 nm for the rhombic dodecahedral crystals, while the octahedral crystal displays the largest particle mean diameter of 864 nm. The XPS results indicate that the copper is primarily CuI in Cu2O, but some as CuII are also present. The apparent optical band gap energies could be determined from the optical properties of the five Cu-oxide nanocrystals, using the classical Tauc equation. The apparent optical band gap energies ranged between 2.04 and 2.14 eV. The Ullmann C-O coupling reaction was used to investigate the catalytic performance of the Cu-oxide nanocrystals. The fluffy sphere gave the highest % conversion, while the rhombic dodecahedral showed the lowest conversion.


2008 ◽  
Vol 1102 ◽  
Author(s):  
Daniel Hoy ◽  
Martin Kordesch

AbstractThe electronic properties of an InN/anatse bilayer, proposed as a replacement for the dye/semi-conductor interface in Dye Sensitized Solar Cell[1, 2], are measured. RF sputtered thin films of anatase and InN are used as the “dye” replacement. . Two types of InN film are prepared: polycrystalline samples deposited at high temperature, with an optical band gap of < 1 eV, and as-deposited (at least partially amorphous) samples with an optical band gap >1 eV. Energy Dispersive X-ray fluorescence, X-ray Diffraction, and Raman spectroscopy are used to characterize the samples. The resistance in the dark and under illumination are measured. The samples deposited at high temperature are crystalline and have a sheet resistivity ≈ 4 Ω/⁐, and display no photoconductivity. The partially amorphous samples have sheet resistivity of ≈ 500Ω/⁐. Since both types of InN films, including high quality (based on band gap) polycrystalline InN, do not show increased conductivity with light, we conclude that a solar cell based on an InN/anatase bilayer is not feasible.


Sign in / Sign up

Export Citation Format

Share Document