scholarly journals Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice

Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 345-359 ◽  
Author(s):  
Badia Barakat ◽  
Anne E O'Connor ◽  
Elspeth Gold ◽  
David M de Kretser ◽  
Kate L Loveland

Testicular development is governed by the combined influence of hormones and proteins, including FSH, inhibins, activins and follistatin (FST). This study documents the expression of these proteins and their corresponding mRNAs, in testes and serum from mice aged 0 through 91 dayspost partum(dpp), using real-time PCR,in situhybridisation, immunohistochemistry, ELISA and RIA. Serum immunoactive total inhibin and FSH levels were negatively correlated during development, with FSH levels rising and inhibin levels falling. Activin A production changed significantly during development, with subunit mRNA and protein levels declining rapidly after 4 dpp, while simultaneously levels of the activin antagonists, FST and inhibin/activin βC, increased. Inhibin/activin βAand βBsubunit mRNAs were detected in Sertoli, germ and Leydig cells throughout testis development, with the βAsubunit also detected in peritubular myoid cells. The α, βA, βBand βCsubunit proteins were detected in Sertoli and Leydig cells of developing and adult mouse testes. While βAand βBsubunit proteins were observed in spermatogonia and spermatocytes in immature testes, βCwas localised to leptotene and zygotene spermatocytes in immature and adult testes. Nuclear βAsubunit protein was observed in primary spermatocytes and nuclear βCsubunit in gonocytes and round spermatids. The changing spatial and temporal distributions of inhibins and activins indicate that their modulated synthesis and action are important during onset of murine spermatogenesis. This study provides a foundation for evaluation of these proteins in mice with disturbed testicular development, enabling their role in normal and perturbed spermatogenesis to be more fully understood.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Vincenza Ciaramella ◽  
Rosanna Chianese ◽  
Paolo Pariante ◽  
Silvia Fasano ◽  
Riccardo Pierantoni ◽  
...  

Hypothalamic Gonadotropin Releasing Hormone (GnRH),viaGnRH receptor (GnRHR), is the main actor in the control of reproduction, in that it induces the biosynthesis and the release of pituitary gonadotropins, which in turn promote steroidogenesis and gametogenesis in both sexes. Extrabrain functions of GnRH have been extensively described in the past decades and, in males, local GnRH activity promotes the progression of spermatogenesis and sperm functions at several levels. The canonical localization ofGnrh1andGnrhr1mRNA is Sertoli and Leydig cells, respectively, but ligand and receptor are also expressed in germ cells. Here, we analysed the expression rate ofGnrh1andGnrhr1in rat testis (180 days old) by quantitative real-time PCR (qPCR) and byin situhybridization we localizedGnrh1andGnrhr1mRNA in different spermatogenic cells of adult animals. Our data confirm the testicular expression ofGnrh1and ofGnrhr1in somatic cells and provide evidence that their expression in the germinal compartment is restricted to haploid cells. In addition, not only Sertoli cells connected to spermatids in the last steps of maturation but also Leydig and peritubular myoid cells expressGnrh1.


2005 ◽  
Vol 17 (9) ◽  
pp. 84
Author(s):  
M. Sarraj ◽  
P. J. McClive ◽  
K. L. Loveland ◽  
A. H. Sinclair

We present a detailed study on the expression pattern of Wsb2 in the mouse foetal and adult gonad. Wsb2 expression was analysed during mouse embryogenesis by whole-mount, section in situ hybridisation and immunohistochemistry. Wsb2 was found to be expressed in the developing mouse gonads from 11.5 dpc to 16.5 dpc. Expression is initially equal in both sexes from 10.5 dpc until 12.0 dpc, then it persists in the male gonad. Wsb2 expression was confined to the cords in both Sertoli cell and germ cells. Other sites of Wsb2 embryonic expression were the somites, dorsal root ganglia and the lateral mantle layer of the neural tube. mRNA encoding Wsb2 and Wsb2 protein has been detected in the newborn testis in both gonocytes and Sertoli cells. Wsb2 mRNA in the adult mouse testis was observed in Sertoli cells, spermatogonia, spermatocytes and the corresponding Wsb2 protein expression was in pachytene spermatocytes, round and elongated spermatids, Sertoli cells and Leydig cells. The differential expression of Wsb2 in male versus female embryonic gonads suggests it may play a role in mammalian sex determination during embryonic development and its expression in the first wave of spermatogenesis and in the adult suggests a later role in spermatogenesis.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 796 ◽  
Author(s):  
Wang ◽  
Li ◽  
Liu ◽  
Zhang ◽  
Zhao ◽  
...  

We have previously reported that glyoxalase domain-containing protein 4 (GLOD4) is expressed in sheep testes by proteome analysis, but its roles during testicular development remain unclear. The aim of this study was to understand the expression characteristics and biological functions of the GLOD4 gene in developmental Tibetan sheep testes. The cDNA sequence of the Tibetan sheep GLOD4 gene was cloned by the RT-PCR method, and the structural characteristics of the GLOD4 protein were analyzed using relevant bioinformatics software, including ProtParam, TMHMM, Signal P 4.1, SOPMA, and phyre2. The expression patterns and immunolocalization of GLOD4 were examined in developmental testes derived from three-month-old (3M), one-year-old (1Y), and three-year-old (3Y) Tibetan sheep using quantitative real-time PCR (qRT-PCR), Western blot, immunohistochemistry, and immunofluorescence staining. The sequence analysis showed that the coding sequence (CDS) region of the GLOD4 gene was 729 bp in length and encoded 242 amino acids. Bioinformatics analysis found that the nucleotide and amino acid sequence of Tibetan sheep GLOD4 exhibited the highest sequence similarity with goat and chiru, and the least with zig-zag eel, of the species compared. GLOD4 expressions at both the mRNA and protein levels were significantly higher in the testes of the 1Y and 3Y groups than those in the 3M group (p < 0.01). Immunohistochemistry and immunofluorescence results indicated that the GLOD4 protein was mainly localized in the cytoplasm of Leydig cells from Tibetan sheep testes throughout the development stages. These results taken together suggest that the GLOD4 gene may be implicated in the development of the Leydig cells of Tibetan sheep during different stages of maturity.


1995 ◽  
Vol 145 (1) ◽  
pp. 35-42 ◽  
Author(s):  
G B Thomas ◽  
E J Davidson ◽  
H Engelhardt ◽  
D T Baird ◽  
A S McNeilly ◽  
...  

Abstract In order to investigate the ontogeny of gonadal inhibin production in the male fetal sheep, testes were collected from male fetuses at days 70, 100, 130 and 140 of gestation (term=145 days). The expression and localization of inhibin α- and inhibin βA-subunit mRNA and protein were evaluated using in situ hybridization and immunocytochemistry. The expression of inhibin α-subunit mRNA was localized within the seminiferous cords of the developing fetal testis and progressively increased with gestational age. Immunostaining corresponding to immunoreactive inhibin α-subunit was detected in Sertoli cells within the seminiferous cords at days 100, 130 and 140 of gestation. In addition, immunostaining was detectable in a small proportion of Leydig cells. No expression of inhibin βA-subunit mRNA or immunoreactivity was detected in any testicular tissue at any stage of gestation. These data show that the Sertoli cells of the developing fetal sheep testis have the capacity to produce inhibin α-subunit by day 100 of gestation and that production increases during late gestation. Journal of Endocrinology (1995) 145, 35–42


2013 ◽  
Vol 65 (5) ◽  
pp. 1329-1338
Author(s):  
R.M.B. Valença ◽  
V.A. Silva Junior ◽  
L.P.C. Araújo ◽  
J.C. Reis ◽  
M.M.P. Guerra ◽  
...  

Aiming to evaluate the effect of the diet protein content on testicular parameters in pigs, 21 non-gelded male Dalland pigs were used and randomly divided into three groups. Males belonging to groups G2 and G3 received a diet with crude protein levels of 15% below and above, respectively, in relation to G1 (control). At 210 days of age, animals were castrated, and testis and epididymis were collected for morphometric and histomorphometry analyses. No difference was observed in relation to the total length of seminiferous tubules (G1=3239.9±333,3m; G2=2989.4±171,7m and G3=3059.5±254.9m), population of Sertoli cell (G1=4.7±0.5x10(9); G2=4.3±0.3x10(9) and G3=4.7±0.5x10(9)), population (G1=31.6±5.58x10(9); G2=27.3±4.0x10(9) and G3=26.4±3.9x10(9)) and volume of Leydig cells (G1=1289.3±182.6µm³; G2=1179.1±85.4µm³ and G3=1133.3±37.8µm³) and sperm production (G1=5.9±0.9x10(9); G2=5.6±0.6x10(9) and G3=5.1±0.3x10(9)). Protein levels were sufficient to maintain spermatogenesis in different experimental groups. It can be concluded that the magnitude of variation in levels of protein used in different stages of development was not sufficient to promote significant changes in testicular development and spermatogenesis process in adult animals.


2019 ◽  
Vol 19 (2) ◽  
pp. 120-126
Author(s):  
J. Wei ◽  
Y. Yu ◽  
Y. Feng ◽  
J. Zhang ◽  
Q. Jiang ◽  
...  

Background: Homocysteine (Hcy) has been suggested as an independent risk factor for atherosclerosis. Apolipoprotein M (apoM) is a constituent of the HDL particles. The goal of this study was to examine the serum levels of homocysteine and apoM and to determine whether homocysteine influences apoM synthesis. Methods: Serum levels of apoM and Hcy in 17 hyperhomocysteinemia (HHcy) patients and 19 controls were measured and their correlations were analyzed. Different concentrations of homocysteine (Hcy) and LY294002, a specific phosphoinositide 3- kinase (PI3K) inhibitor, were used to treat HepG2 cells. The mRNA levels were determined by RT-PCR and the apoM protein mass was measured by western blot. Results: We found that decreased serum apoM levels corresponded with serum HDL levels in HHcy patients, while the serum apoM levels showed a statistically significant negative correlation with the serum Hcy levels. Moreover, apoM mRNA and protein levels were significantly decreased after the administration of Hcy in HepG2 cells, and this effect could be abolished by addition of LY294002. Conclusions: resent study demonstrates that Hcy downregulates the expression of apoM by mechanisms involving the PI3K signal pathway.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R.A Montone ◽  
M Camilli ◽  
M Russo ◽  
M Del Buono ◽  
F Gurguglione ◽  
...  

Abstract Background Brain-derived neurotrophic factor (BDNF) is a neurotrophine that plays a key role in the regulation of both central and peripheral nervous system. Moreover, BDNF is secreted in multiple tissues and exerts systemic, autocrine, and paracrine effects in the cardiovascular system. Of importance, BDNF expression was enhanced in macrophages and smooth muscle cells in atherosclerotic coronary arteries and may be involved in thrombus formation. Thus, BDNF has been suggested as an important link between inflammation and thrombosis, potentially involved in the pathogenesis of acute coronary syndrome (ACS). Purpose In our study we aimed at assessing serum levels of BDNF in patients with ACS, evaluating differences according to clinical presentation [ST-segment elevation myocardial infarction (STEMI) vs. Non-ST-segment elevation ACS (NSTE-ACS)]. Moreover, we assessed the presence of optical coherence (OCT)-defined macrophage infiltrates (MØI) in the culprit vessel of ACS patients and evaluated their relationship with BDNF levels. Methods ACS patients were prospectively selected. Blood samples were collected at admission and serum levels of BDNF were subsequently assessed. Presence of OCT-defined MØI along the culprit vessel was assessed. Results 166 ACS patients were enrolled [mean age 65.3±11.9 years, 125 (75.3%) male, 109 STEMI, 57 NSTE-ACS]. Serum levels of BDNF were higher among STEMI patients compared with NSTE-ACS [median (IQR) 2.48 pg/mL (1.54–3.34) vs. 2.12 pg/mL (1.34–2.47), p=0.007], while C-reactive protein levels did not differ between the two groups. OCT assessment was performed in 53 patients and MØI were detected in 27 patients. Of importance, patients with MØI in the culprit vessel had higher levels of BDNF compared with patients without MØI [median (IQR) 2.23 pg/mL (1.38–2.53) vs. 1.41 pg/mL (0.93–2.07), p=0.023], while C-reactive protein levels did not differ between the two groups. Of note, at multivariate regression analysis BDNF levels were independent predictor of MØI [OR: 2.20; 95% CI (1.02–4.74), p=0.043]. Conclusions Serum levels of BDNF may reliable identify the presence of local macrophage inflammatory infiltrates in patients with ACS. Moreover, BDNF levels are higher in patients with STEMI compared with NSTE-ACS. Taken together, these data suggest that BDNF may represent an interesting link between local inflammatory activation and enhanced thrombosis in ACS. BDNF serum levels Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Zhao ◽  
Hui Li ◽  
Guangxin Chen ◽  
Lijun Du ◽  
Peiyan Xu ◽  
...  

Abstract Background Aneuploidy is the most frequent cause of early-embryo abortion. Any defect in chromosome segregation would fail to satisfy the spindle assembly checkpoint (SAC) during mitosis, halting metaphase and causing aneuploidy. The mitotic checkpoint complex (MCC), comprising MAD1, MAD2, Cdc20, BUBR1 and BUB3, plays a vital role in SAC activation. Studies have confirmed that overexpression of MAD2 and BUBR1 can facilitate correct chromosome segregation and embryo stability. Research also proves that miR-125b negatively regulates MAD1 expression by binding to its 3′UTR. However, miR-125b, Mad1 and Bub3 gene expression in aneuploid embryos of spontaneous abortion has not been reported to date. Methods In this study, embryonic villi from miscarried pregnancies were collected and divided into two groups (aneuploidy and euploidy) based on High-throughput ligation-dependent probe amplification (HLPA) and Fluorescence in situ hybridization (FISH) analyses. RNA levels of miR-125b, MAD1 and BUB3 were detected by Quantitative real-time PCR (qRT-PCR); protein levels of MAD1 and BUB3 were analysed by Western blotting. Results statistical analysis (p < 0.05) showed that miR-125b and BUB3 were significantly down-regulated in the aneuploidy group compared to the control group and that MAD1 was significantly up-regulated. Additionally, the MAD1 protein level was significantly higher in aneuploidy abortion villus, but BUB3 protein was only mildly increased. Correlation analysis revealed that expression of MAD1 correlated negatively with miR-125b. Conclusion These results suggest that aneuploid abortion correlates positively with MAD1 overexpression, which might be caused by insufficient levels of miR-125b. Taken together, our findings first confirmed the negative regulatory mode between MAD1 and miR-125b, providing a basis for further mechanism researches in aneuploid abortion.


Author(s):  
Bianca Mages ◽  
Thomas Fuhs ◽  
Susanne Aleithe ◽  
Alexandra Blietz ◽  
Constance Hobusch ◽  
...  

AbstractIn the setting of ischemic stroke, the neurofilament subunit NF-L and the microtubule-associated protein MAP2 have proven to be exceptionally ischemia-sensitive elements of the neuronal cytoskeleton. Since alterations of the cytoskeleton have been linked to the transition from reversible to irreversible tissue damage, the present study investigates underlying time- and region-specific alterations of NF-L and MAP2 in different animal models of focal cerebral ischemia. Although NF-L is increasingly established as a clinical stroke biomarker, MAP2 serum measurements after stroke are still lacking. Therefore, the present study further compares serum levels of MAP2 with NF-L in stroke patients. In the applied animal models, MAP2-related immunofluorescence intensities were decreased in ischemic areas, whereas the abundance of NF-L degradation products accounted for an increase of NF-L-related immunofluorescence intensity. Accordingly, Western blot analyses of ischemic areas revealed decreased protein levels of both MAP2 and NF-L. The cytoskeletal alterations are further reflected at an ultrastructural level as indicated by a significant reduction of detectable neurofilaments in cortical axons of ischemia-affected areas. Moreover, atomic force microscopy measurements confirmed altered mechanical properties as indicated by a decreased elastic strength in ischemia-affected tissue. In addition to the results from the animal models, stroke patients exhibited significantly elevated serum levels of MAP2, which increased with infarct size, whereas serum levels of NF-L did not differ significantly. Thus, MAP2 appears to be a more sensitive stroke biomarker than NF-L, especially for early neuronal damage. This perspective is strengthened by the results from the animal models, showing MAP2-related alterations at earlier time points compared to NF-L. The profound ischemia-induced alterations further qualify both cytoskeletal elements as promising targets for neuroprotective therapies.


2008 ◽  
Vol 20 (4) ◽  
pp. 505 ◽  
Author(s):  
A. Wagner ◽  
R. Claus

Oestrogens and glucocorticoids are important for spermatogenesis and are regulated via aromatase for oestradiol synthesis and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) as an inactivator of cortisol. In the present study postnatal changes of these two enzymes were monitored together with testicular development and hormone concentrations. Pigs were assigned to three periods: Weeks 0–5, Weeks 5–11 or Weeks 11–17. In Period 1, groups of four piglets were killed after each week. Blood plasma and testes were sampled immediately post mortem. For Periods 2 and 3, groups of six pigs were fitted with vein catheters for daily blood collection. Testes from all pigs were obtained after killing. Levels of testosterone, oestradiol, LH, FSH and cortisol were determined radioimmunologically. The 11β-HSD 2- and aromatase-expressing cells were stained immunocytochemically. All hormones were maximal 2 weeks after birth. A rise of LH, testosterone and oestradiol occurred again at Week 17. FSH and cortisol remained basal. Parallel to the first postnatal rise, the presence of aromatase and 11β-HSD 2 in Leydig cells increased, together with germ and Sertoli cell numbers. Expression was low from 3 to 5 weeks, was resumed after Week 5 and was maximal at Week 17. The amount of 11β-HSD 2 in germ cells was greatest at birth, decreased thereafter and was absent after Week 3.


Sign in / Sign up

Export Citation Format

Share Document