scholarly journals Oxidative stress-mediated caspase-dependent intrinsic apoptosis and proautophagic therapeutic potential of Salvia moorcroftiana Wall. ex Benth. growing in the Kashmir Valley, India

2021 ◽  
Vol 8 (11) ◽  
pp. 4718-4727
Author(s):  
Aadil Khursheed ◽  
Vikrant Jain
2019 ◽  
Vol 70 (1) ◽  
pp. 78-83
Author(s):  
Alexandra Totan ◽  
Daniela Gabriela Balan ◽  
Daniela Miricescu ◽  
Radu Radulescu ◽  
Iulia Ioana Stanescu ◽  
...  

Oxidative stress (OS) plays an important role in NAFLD molecular mechanism. Nanoencapsulation represents a novel strategy to enhance therapeutic potential of conventional drugs. Our study analyses the encapsulated vitamin E effect on lipid metabolism and oxidative stress biomarkers in NAFLD rats. Animals were divided into 3 groups : G1 - the normal diet group; G2- the high caloric diet group ; G3 - high-caloric diet group receiving PLGA-vit E, 50 mg / kg. Serum advanced human oxidative protein (AOPP), total antioxidant capacity (TAC) and vitamin E were analysed using ELISA technique. Our results showed significant increase of G2 GPT, ALP, GGT, TG, glucose, TC and AOPP, versus G1 ( P [ 0.05) and a significant decrease of G2 serum TAC and vitamin E versus G1 results ( p = 0.01 and 0.01). Vitamin E nanoparticles (G3) caused a significant increase of TAC and significant decrease of serum AOPP, versus G2 (p [ 0.01). Results showed a significant reduction of GPT, GGT, ALP, TG and total cholesterol ( p [0.05) in G3 versus G2. PLGA nanoparticles should be considered an attractive and promising alternative to improve the bioavailability and biological activity of vitaminE.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


2020 ◽  
Vol 18 (10) ◽  
pp. 779-790 ◽  
Author(s):  
Alexandre LeBlanc ◽  
Miroslava Cuperlovic-Culf ◽  
Pier Jr. Morin ◽  
Mohamed Touaibia

Background:: The current therapeutic options available to patients diagnosed with Amyotrophic Lateral Sclerosis (ALS) are limited and edaravone is a compound that has gained significant interest for its therapeutic potential in this condition. Objectives: : The current work was thus undertaken to synthesize and characterize a series of edaravone analogues. Methods: A total of 17 analogues were synthesized and characterized for their antioxidant properties, radical scavenging potential and copper-chelating capabilities. Results: Radical scavenging and copper-chelating properties were notably observed for edaravone. Analogues bearing hydrogen in position 1 and a phenyl at position 3 and a phenyl in both positions of pyrazol-5 (4H)-one displayed substantial radical scavenging, antioxidants and copper-chelating properties. High accessibility of electronegative groups combined with higher electronegativity and partial charge of the carbonyl moiety in edaravone might explain the observed difference in the activity of edaravone relative to the closely related analogues 6 and 7 bearing hydrogen at position 1 and a phenyl at position 3 (6) and a phenyl in both positions (7). Conclusion: Overall, this study reveals a subset of edaravone analogues with interesting properties. Further investigation of these compounds is foreseen in relevant models of oxidative stress-associated diseases in order to assess their therapeutic potential in such conditions.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1311
Author(s):  
Shu-Ju Wu ◽  
Chian-Jiun Liou ◽  
Ya-Ling Chen ◽  
Shu-Chen Cheng ◽  
Wen-Chung Huang

Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4210
Author(s):  
Yan Zhou ◽  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Chi Teng Vong ◽  
Yitao Wang ◽  
...  

Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 361
Author(s):  
Margaux Sambon ◽  
Anna Gorlova ◽  
Alice Demelenne ◽  
Judit Alhama-Riba ◽  
Bernard Coumans ◽  
...  

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sumeet S Vaikunth ◽  
Karl T Weber ◽  
Syamal K Bhattacharya

Introduction: Isoproterenol-induced acute stressor state simulates injury from burns or trauma, and results in Ca 2+ overloading and oxidative stress in diverse tissues, including cardiac myocytes and their subsarcolemmal mitochondria (SSM), overwhelming endogenous Zn 2+ -based antioxidant defenses. We hypothesized that pretreatment with nebivolol (Nebi), having dual beta-1 antagonistic and novel beta-3 receptor agonistic properties, would prevent Ca 2+ overloading and oxidative stress and upregulate Zn 2+ -based antioxidant defenses, thus enhancing its overall cardioprotective potential in acute stressor state. Methods: Eight-week-old male Sprague-Dawley rats received a single subcutaneous dose of isoproterenol (1 mg/kg) and compared to those treated with Nebi (10 mg/kg by gavage) for 10 days prior to isoproterenol. SSM were harvested from cardiac tissue at sacrifice. Total Ca 2+ , Zn 2+ and 8-isoprostane levels in tissue, and mitochondrial permeability transition pore (mPTP) opening, free [Ca 2+ ] m and H 2 O 2 production in SSM were monitored. Untreated, age-/sex-matched rats served as controls; each group had six rats and data shown as mean±SEM. Results: Compared to controls, isoproterenol rats revealed: (1) Significantly (*p<0.05) increased cardiac tissue Ca 2+ (8.2±0.8 vs. 13.7±1.0*, nEq/mg fat-free dry tissue (FFDT)), which was abrogated ( # p<0.05) by Nebi (8.9±0.4 # ); (2) Reduced cardiac Zn 2+ (82.8±2.4 vs. 78.5±1.0*, ng/mg FFDT), but restored by Nebi (82.4±0.6 # ); (3) Two-fold rise in cardiac 8-isoprostane (111.4±13.7 vs. 232.1±17.2*, pmoles/mg protein), and negated by Nebi (122.3+14.5 # ); (4) Greater opening propensity for mPTP that diminished by Nebi; (5) Elevated [Ca 2+ ] m (88.8±2.5 vs. 161.5±1.0*, nM), but normalized by Nebi (93.3±2.7 # ); and (6) Increased H 2 O 2 production by SSM (97.4±5.3 vs. 142.8±7.0*, pmoles/mg protein/min), and nullified by Nebi (106.8±9.0 # ). Conclusions : Cardioprotection conferred by Nebi, a unique beta-blocker, prevented Ca 2+ overloading and oxidative stress in cardiac tissue and SSM, while simultaneously augmenting antioxidant capacity and promoting mPTP stability. Therapeutic potential of Nebi in patients with acute stressor states remains a provocative possibility that deserves to be explored.


Author(s):  
Rosária Aires ◽  
Ildernandes Vieira-Alves ◽  
Leda Maria Coimbra-Campos ◽  
Marina Ladeira ◽  
Teresa Socarras ◽  
...  

BACKGROUND AND PURPOSE Acute lung injury (ALI) is a critical disorder that has high mortality rates, and pharmacological therapies are so far ineffective. The pathophysiology of ALI involves pulmonary oxidative stress and inflammatory response. Fullerol is a carbon nanocomposite that possesses antioxidant and anti-inflammatory properties. Here, we evaluated the therapeutic potential of fullerol and its mechanisms in a model of paraquat-induced ALI. EXPERIMENTAL APPROACH Rats were divided into ALI (paraquat alone), fullerol (paraquat plus fullerol), and control groups. Survival curves were estimated using the Kaplan-Meier method. The myeloperoxidase assay, ELISA, and hematoxylin and eosin staining were used to determine neutrophils infiltration, cytokines production, and histopathological parameters in lung samples, respectively. The antioxidant effect of fullerol was evaluated in vitro and ex vivo. KEY RESULTS Fullerol (0.01 to 0.3 mg/kg) markedly reduced the severe lung injury and high mortality rates observed in ALI rats. Moreover, fullerol (0.03 mg/kg) inhibited the reactive oxygen species formation and lipid peroxidation seen in lungs from ALI rats, and exhibited a potent concentration-dependent (10 to 10 mg/ml) in vitro antioxidant activity. Importantly, fullerol (0.03 mg/kg) inhibited neutrophils accumulation in bronchoalveolar lavage and lungs, and the increase in pulmonary levels of TNF-α, IL-1β, IL-6, and CINC-1 in ALI rats. CONCLUSIONS AND IMPLICATIONS Fullerol treatment was effective in reducing pulmonary damage and ALI-induced mortality, highlighting its therapeutic potential in an ALI condition. Searching for new pharmacological therapies to treat ALI may be desirable especially in view of the new coronavirus disease 2019 that currently plagues the world.


Sign in / Sign up

Export Citation Format

Share Document