Atrial fibrillation and physical activity

2013 ◽  
Vol 154 (13) ◽  
pp. 503-509
Author(s):  
Péter Apor

Atrial fibrillation is the most frequent arrhythmia. Its „lone” form (when underlying pathology is not discovered) can be detected in a few percent of endurance sports participants, and in growing occurrence among the veterans, probably on the basis of some cardiac or other irregularities. Enhanced vagal tone and sudden sympathetic impulse, repetitive oxidative stress, inflammatory processes, enlarged atria, electric instabilization can explain the higher occurrence. Treatment of atrial fibrillation enables the affected persons to participate in regular medium-intensity exercise, 3–5 hours a week, which offers a protective role against cardiovascular, metabolic and mental illnesses. Orv. Hetil., 2013, 154, 503–509.

2016 ◽  
Vol 2016 ◽  
pp. 1-32 ◽  
Author(s):  
Nada Sallam ◽  
Ismail Laher

Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual’s characteristics; therefore, the development of personalized exercise programs is essential.


2020 ◽  
Vol 10 (5) ◽  
pp. 578-586
Author(s):  
Areeg M. Abdelrazek ◽  
Shimaa A. Haredy

Background: Busulfan (Bu) is an anticancer drug with a variety of adverse effects for cancer patients. Oxidative stress has been considered as a common pathological mechanism and it has a key role in the initiation and progression of liver injury by Bu. Aim: The study aimed to evaluate the antioxidant impact of L-Carnitine and Coenzyme Q10 and their protective role against oxidative stress damage in liver tissues. Methods and Material: Thirty-six albino rats were divided equally into six groups. G1 (con), received I.P. injection of DMSO plus 1 ml of distilled water daily by oral gavages; G2 (Bu), received I.P. injection of Bu plus 1 ml of the distilled water daily; G3 (L-Car), received 1 ml of L-Car orally; G4 (Bu + L-Car) received I.P. injection of Bu plus 1 ml of L-Car, G5 (CoQ10) 1 ml of CoQ10 daily; and G6 (Bu + CoQ10) received I.P. injection of Bu plus 1 ml of CoQ10 daily. Results: The recent data showed that Bu induced significant (P<0.05) elevation in serum ALT, AST, liver GSSG, NO, MDA and 8-OHDG, while showing significant (P<0.05) decrease in liver GSH and ATP. On the other hand, L-Carnitine and Coenzyme Q10 ameliorated the negative effects prompted by Bu. Immunohistochemical expression of caspase-3 in liver tissues reported pathological alterations in Bu group while also showed significant recovery in L-Car more than CoQ10. Conclusion: L-Car, as well as CoQ10, can enhance the hepatotoxic effects of Bu by promoting energy production in oxidative phosphorylation process and by scavenging the free radicals.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2021 ◽  
Vol 10 (5) ◽  
pp. 1148
Author(s):  
Makedonka Atanasovska Velkovska ◽  
Katja Goričar ◽  
Tanja Blagus ◽  
Vita Dolžan ◽  
Barbara Cvenkel

Oxidative stress and neuroinflammation are involved in the pathogenesis and progression of glaucoma. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in inflammation and oxidative stress genes on the risk of glaucoma, the patients’ clinical characteristics and the glaucoma phenotype. In total, 307 patients with primary open-angle glaucoma or ocular hypertension were enrolled. The control group included 339 healthy Slovenian blood donors. DNA was isolated from peripheral blood. Genotyping was performed for SOD2 rs4880, CAT rs1001179, GPX1 rs1050450, GSTP1 rs1695, GSTM1 gene deletion, GSTT1 gene deletion, IL1B rs1143623, IL1B rs16944, IL6 rs1800795 and TNF rs1800629. We found a nominally significant association of GSTM1 gene deletion with decreased risk of ocular hypertension and a protective role of IL1B rs16944 and IL6 rs1800629 in the risk of glaucoma. The CT and TT genotypes of GPX1 rs1050450 were significantly associated with advanced disease, lower intraocular pressure and a larger vertical cup–disc ratio. In conclusion, genetic variability in IL1B and IL6 may be associated with glaucoma risk, while GPX and TNF may be associated with the glaucoma phenotype. In the future, improved knowledge of these pathways has the potential for new strategies and personalised treatment of glaucoma.


2021 ◽  
Vol 22 (15) ◽  
pp. 7765
Author(s):  
Youichirou Higashi ◽  
Takaaki Aratake ◽  
Takahiro Shimizu ◽  
Shogo Shimizu ◽  
Motoaki Saito

Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Demenko ◽  
G.A Chumakova

Abstract Background Mental disorders in patients with cardiovascular disease have a significant impact on the course, the prognosis of the underlying disease and quality of life (QOL). Objective We aimed to examine the prevalence of anxiety and depressive disorders and their impact on the quality of life in patients with atrial fibrillation (AF). Materials and methods In 52 with permanent AF and 50 with paroxysmal AF patients, we administered the depression scale Tsung, the scale of situational anxiety (SA) and personal anxiety (PA) Spielberger-Hanin; QOL was assessed the SF-36 quality of life assessment scale. Correlation analysis using Spearman's rank correlation coefficient. Results The prevalence symptoms mild depression situational or neurotic genesis was 21.1% (12 patients) in Group 1 and 12.0% (6 patients) in Group 2 (p&gt;0.05). Subdepressive state was two percents of patients in Group 1 and Group 2. The incidence SA was 59.6% (31 patients) in Group 1 and 52.0% (26 patients) in Group 2. The incidence PA was 74.0% (37 patients) in Group 2 and 67.3% (35 patients) in Group 1. The average score the physical component of health (PCH) was 29,8±4,3 in Group 1, the mental component of health (MCH) – 49.5±7.4 points; p&lt;0.05. In Group 2: PCH – 44.8±6.6 points, MCH – 26.6±7.5 points; p&lt;0.05. Correlation analysis showed negative strong correlations between SA and MCH (r=−0.64, p=0.0005) and between PA and MCH (r=−0.69, p&lt;0.0001), between SA and PCH (r=−0.71, p=0.0001), between depression and PCH (r=−0.69, p=0.023). Negative statistically significant correlation between depression and MCH (r=−0.69, p=0.54) and negative medium correlation between depression and PCH (r=−0.64, p=0.23). Conclusion These findings suggest that we did not identify patients with symptoms of a true depressive (that can cause pseudodementia and influenced to complete tests). 16.5% patients with AF had mild depression of situational or neurotic genesis. Depression may be a pathogenetic factor of AF or develop because of paroxysms AF – psychological stress. More than 50% patients in Group 1 and Group 2 had an increased anxiety score. SA is more common in patients with permanent AF, probably because older people difficult to adapt to a new situation. PA is more common in patient with paroxysmal AF, probably because disease is sudden and causes anxiety. The PCH of QOL is more impairment in patients with permanent AF, because complications (for example heart failure) impairment physical activity. However, PCH also reduced in patient with paroxysmal AF, because disease is sudden may occur during physical activity. The MCH of QOL is more impairment in patients with paroxysmal AF, because waiting attack effect on mental health and social functioning. An increased level of anxiety and depression negatively affected the mental and physical health of patients with AF. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 22 (9) ◽  
pp. 4676
Author(s):  
Katja Badanjak ◽  
Sonja Fixemer ◽  
Semra Smajić ◽  
Alexander Skupin ◽  
Anne Grünewald

With the world’s population ageing, the incidence of Parkinson’s disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.


Sign in / Sign up

Export Citation Format

Share Document