Layer-by-Layer Oxidation of Silicon
ABSTRACTGrowth kinetics of native oxide on HF-treated Si surfaces terminated with Si-H bonds has been studied by angle-resolved x-ray photoelectron spectroscopy. The oxide growth rate in pure water for an n+ Si(100) surface is significantly high compared to that of p+, and the n or p type Si oxidation rate is in between. This is explained by the formation of ions through electron transfer from Si to adsorbed O2 molecules and the resulting enhancement of the oxidation rate. The oxide growth on Si(100) is faster than (110) and (111) as interpreted in terms of the steric hindrance for molecular oxygen adsorption on the hydrogen terminated silicon 1×1 surface structures.