Titanium Disilicide Formation on Cmos Structures with Phosphorous Doped Gates

1993 ◽  
Vol 303 ◽  
Author(s):  
S. Chtttipeddi ◽  
A. K. Nanda ◽  
V. C. Kannan ◽  
W. T. Cochran

ABSTRACTSelf aligned refractory metal silicides such as titanium disilicide have been used extensively in VLSI and ULSI structures. Unlike earlier work which has relied on undoped substrates and a single implant species, in the present study TiSi2 formation on phosphorous doped poly-Si in the presence of multiple dopants has been investigated. TEM micrographs are discussed which show the difference in silicide formation for the case of the BF2 and arsenic implanted samples. We have found that the presence of fluorine in the BF2 implant retards the silicide formation for phosphorous doped poly-Si substrates. Additionally, the effect of substrate grain size on TiSi2 formation has been investigated using undoped α-Si and poly-Si substrates.

1986 ◽  
Vol 71 ◽  
Author(s):  
C. A. Pico ◽  
N. C. Tran ◽  
J. R. Jacobs ◽  
M. G. Lagally

AbstractRefractory-metal silicides are currently receiving widespread attention because of their usefulness as interconnects in VLSI devices. Potentially the most important of these silicides is TiSi2. TiSi2 offers a sharp stable interface, a high process-compatible eutectic temperature, and the lowest resistivity of all refractory-metal silicides. Much of the previous work on TiSi2 [1-8] has been directed towards the understanding of the kinetics of silicide formation in order to optimize these electrical and interfacial properties. One parameter that may affect the silicide formation is substrate orientation [9]. We have compared the kinetics of formation of TiSi2 for Ti deposited onto p-type 10Ω-cm Si(100) and Si(111). All process parameters except substrate orientation were identical. 2800Å of Ti was electron-beam evaporated at a rate of 20Å/s and a background pressure of 9×10−8 torr onto chemically cleaned (HNO3, HF, rinse) Si substrates and subsequently annealed at temperatures between 470°C and 700°C in evacuated sealed quartz tubes. A turbopumped vacuum system was used to evacuate the quartz tube before sealing. A Ti getter was independently heated to remove remaining background contaminants prior to annealing.


1983 ◽  
Vol 25 ◽  
Author(s):  
L. R. Zheng ◽  
E. Zingu ◽  
J. W. Mayer

ABSTRACTSilicide formation and growth kinetics have been investigated with lateral diffusion couples formed by deposition of Ni and Cr layers on patterned Si substrates and by deposition of Ni patterns on Si films. For annealing temperatures between 520 and 650°C the growth of CrSi2follows a (time)½ dependence with an activation energy of 1.4± 0.1 eV. In Ni-silicide formation at temperatures below 600°C, Ni was the predominant moving species. As the temperature increased, the motion of Si became significant. The apparent activation energy for silicide formation varied from Ea ≅ 1.4 eV for Ni motion at relatively low temperatures to Ea≅ 2.3 eV for Si motion that occurs at high temperatures. Lateral diffusion in device geometry structures resulted in degradation of contact planarity due to the penetration of metal silicides in Ni-Si structures or the erosion of silicon in Cr-Si structures.


2001 ◽  
Vol 703 ◽  
Author(s):  
Andrew Burns ◽  
W. Li ◽  
C. Baker ◽  
S.I. Shah

ABSTRACTNd doped TiO2 nanostructured thin films were prepared by sol-gel technique on quartz and Si substrates using TiCl4 precursor. As-deposited amorphous films were annealed to form anatase phase in the thin films. The film grain size increased with annealing temperature. Above 800°C, rutile began to segregate and the grain size decreased slightly.The photodegradation of 2-chlorophenol (2-CP) was studied. Doping TiO2 with Nd+3 reduced the photodegradation time. The difference in the ionic radii of Nd+3 and Ti+4 and the oxygen affinities of Nd and Ti were responsible for this effect. These differences help promote electron trapping, thereby increasing the lifetime of the holes which are responsible for the oxidation of 2-CP.


2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


1990 ◽  
Vol 202 ◽  
Author(s):  
J.F. Jongste ◽  
O.B. Loopstra ◽  
G.C.A.M. Janssen ◽  
S. Radelaar

Integrated circuit fabrication consists of many processing steps: e.g. lithography, etching, implantation and metallization. Some of these processes are combined with thermal processing. Heat treatments require special attention because previous fabrication steps may be influenced: e.g. dopant profiles may be deteriorated. The amount of interference of an annealing step with a former process is determined by the ratio of the reaction rates (and hence by the difference in activation energies).


2007 ◽  
Vol 539-543 ◽  
pp. 3094-3099
Author(s):  
Nho Kwang Park ◽  
Jeoung Han Kim ◽  
Jong Taek Yeom

In Alloy 718 ingot cogging process, dynamic and metadynamic recrystallizations, and static grain growth occur, and also the presence of δ phase plays a key role in controlling the grain size. In this study, the evolution of grain structure in VIM/VAR-processed Alloy 718 ingots during post-cogging heat treatments is dealt with. Compression tests were made on VIM/VAR-processed Alloy 718 ingot at temperatures between 900oC ~ 1150oC. Heat treatments were made on the compression-tested specimens, and the variation of grain size was evaluated. Constitutive equations for the grain growth are established to represent the evolution of microstructures. Special attention is paid to the evolution of grain structure under the condition of dynamic and metadynamic recrystallizations, and grain growth. The grain growth rate depends mainly on the presence of δ-phase below the δ-solvus temperature, and on the difference in the grain boundary characteristics above it.


Sign in / Sign up

Export Citation Format

Share Document