Recent Progress in Electrochemical Deposition without Supporting Electrolyte

1994 ◽  
Vol 367 ◽  
Author(s):  
V. Fleury ◽  
M. Rosso ◽  
J.-N. Chazalviel

Electrochemical deposition (ECD) of metals is a very old subject[l], which has considerable applications in the context of electroshaping or electroplating. Electrochemists and chemical engineers have long known the different growth conditions of these metal aggregates and the different parameters which drive morphological changes, at least empirically [2-4]. However, in the recent years, after the introduction of the concept of fractal aggregation[5,6], in the field of non-linear pattern formation[7,8], a lot of work has been devoted to the specific problem of growth of electrodeposits from binary electrolytes [9-51] (i.e. without supporting electrolyte). These studies aimed at understanding the morphology, on the large scale (∼1cm) of the deposits and, more specifically, the transitions between morphologies. It is the aim of this paper to review the progress which has been achieved in the past five years on this question.

2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2020 ◽  
Vol 3 (3) ◽  
pp. 117
Author(s):  
Munawar Khalil ◽  
Rendy Muhamad Iqbal ◽  
Grandprix T.M. Kadja ◽  
Dede Djuhana

In the past several years, solar-driven photocatalytic degradation of organic dyes has been considered as one of the most promising and effective ways to address water pollution issues. Nevertheless, the implementation of such technology for large scale industrial wastewater application is still hampered by the limitation in currently used photocatalysts. Recently, plasmon-enhanced titania-based nanocatalyst has emerged as one of the promising photocatalytic materials for solar-driven wastewater treatment due to its excellent activity and ability to absorb a large portion of solar radiation. Therefore, this review highlights recent progress on applying such material for the photodegradation of organic dyes. In this review, the focus is placed on several mechanisms on how the surface plasmon resonance (SPR) phenomenon could enhance the photocatalytic activity of semiconductors, such as TiO2. Furthermore, the performance of several types of plasmon-enhanced titania nanocatalyst with different kinds of metal plasmonic nanoparticles, i.e., Au-TiO2, Ag-TiO2, and Pd-TiO2, is also compared and comprehensively discussed. Finally, a particular emphasis is also given to highlight the nanocatalysts' kinetics in facilitating the photocatalytic degradation of different types of organic dyes.


2014 ◽  
Vol 1 ◽  
pp. 7 ◽  
Author(s):  
Yihao Yang ◽  
Baile Zhang ◽  
Erping Li ◽  
Hongsheng Chen

Invisibility cloaks have experienced a tremendous development in the past few years, but the current technologies to convert the cloaks into practical applications are still facing numerous bottlenecks. In this paper, we provide the review of the challenges and recent progress in the invisibility cloaks from a practical perspective. In particular, the following key challenges such as non-extreme parameters, homogeneity, omnidirectivity, full polarization, large scale and broad band are addressed. We analyze the physical mechanisms behind the challenges and consequently evaluate the merits and defects of the recent solutions. We anticipate some compromises on the ideal cloaks are required in order to achieve practical invisibility cloaks in the future.


Author(s):  
John B. Ewell ◽  
Philip P. McGrath ◽  
Lee J. Stevan ◽  
John M. Wehrung

The toxin produced by Clostridium botulinum type A is a well-known and a well-studied neurotoxin but not many of these studies have correlated the morphological changes of the bacteria with toxin production. Toxin production in type A has been related to autolysis as well as carbohydrate source. Furthermore, toxin production can be inhibited or eliminated if growth occurs in the presence of ethylenediamine tetraacetic acid (EDTA). During the past year we have attempted to use the scanning electron microscope for this correlation of toxin production with morphology under varying conditions of cultivation.


Author(s):  
Lana Regent ◽  
Maximina Luis-Sunga ◽  
Elena Pastor ◽  
Gonzalo García

Developing sustainable and renewable energy sources is critical as higher and higher global energy and environmental challenges arise. Hydrogen has the highest mass/energy density of any fuel and is considered one of the best sources of clean energy. Water splitting is regarded as one of the most promising solutions for hydrogen production on a large scale. Highly efficient, durable and cost-effective catalysts for hydrogen evolution reaction (HER) are critical in the realization of this goal. Among many materials proposed, graphene-based materials offer some unique properties for HER catalysis. In this review, we present recent progress on development of graphene-based electrocatalysts toward HER throughout the past few years.


2020 ◽  
Author(s):  
Lungwani Muungo

The purpose of this review is to evaluate progress inmolecular epidemiology over the past 24 years in canceretiology and prevention to draw lessons for futureresearch incorporating the new generation of biomarkers.Molecular epidemiology was introduced inthe study of cancer in the early 1980s, with theexpectation that it would help overcome some majorlimitations of epidemiology and facilitate cancerprevention. The expectation was that biomarkerswould improve exposure assessment, document earlychanges preceding disease, and identify subgroupsin the population with greater susceptibility to cancer,thereby increasing the ability of epidemiologic studiesto identify causes and elucidate mechanisms incarcinogenesis. The first generation of biomarkers hasindeed contributed to our understanding of riskandsusceptibility related largely to genotoxic carcinogens.Consequently, interventions and policy changes havebeen mounted to reduce riskfrom several importantenvironmental carcinogens. Several new and promisingbiomarkers are now becoming available for epidemiologicstudies, thanks to the development of highthroughputtechnologies and theoretical advances inbiology. These include toxicogenomics, alterations ingene methylation and gene expression, proteomics, andmetabonomics, which allow large-scale studies, includingdiscovery-oriented as well as hypothesis-testinginvestigations. However, most of these newer biomarkershave not been adequately validated, and theirrole in the causal paradigm is not clear. There is a needfor their systematic validation using principles andcriteria established over the past several decades inmolecular cancer epidemiology.


2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


Author(s):  
Jeasik Cho

This book provides the qualitative research community with some insight on how to evaluate the quality of qualitative research. This topic has gained little attention during the past few decades. We, qualitative researchers, read journal articles, serve on masters’ and doctoral committees, and also make decisions on whether conference proposals, manuscripts, or large-scale grant proposals should be accepted or rejected. It is assumed that various perspectives or criteria, depending on various paradigms, theories, or fields of discipline, have been used in assessing the quality of qualitative research. Nonetheless, until now, no textbook has been specifically devoted to exploring theories, practices, and reflections associated with the evaluation of qualitative research. This book constructs a typology of evaluating qualitative research, examines actual information from websites and qualitative journal editors, and reflects on some challenges that are currently encountered by the qualitative research community. Many different kinds of journals’ review guidelines and available assessment tools are collected and analyzed. Consequently, core criteria that stand out among these evaluation tools are presented. Readers are invited to join the author to confidently proclaim: “Fortunately, there are commonly agreed, bold standards for evaluating the goodness of qualitative research in the academic research community. These standards are a part of what is generally called ‘scientific research.’ ”


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Sign in / Sign up

Export Citation Format

Share Document