scholarly journals Atrial cardiomyopathy — a new concept with a long history

2020 ◽  
Vol 25 (11) ◽  
pp. 3942
Author(s):  
T. G. Vaikhanskaya ◽  
T. V. Kurushko ◽  
Yu. A. Persianskikh ◽  
L. N. Sivitskaya

Atrial cardiomyopathy (ACM) is a relatively common but clinically underestimated disorder, which is characterized by an increased atrial size and dysfunction. Previously, ACM was considered a primary disorder, but in 2016 this concept was revised by European Heart Rhythm Association (EHRA) working group with inclusion of secondary atrial remodeling. The EHRA document details aspects of atrial anatomy and pathophysiology, proposes definitions of ACM, histological classification, outlines the molecular mechanisms of atrial arrhythmia and the problems of personalized treatment and optimization of indications for catheter ablation.Practical application of the proposed ACM classification system, the clinical significance of novel ACM concept and the potential role of this information for a practitioner are presented in this article. Two clinical cases of ACM with “primary” (familial form of ACM due to NPPA gene mutation with primary defect in atrial structure and function) and “secondary” atrial remodeling (ACM caused by a longterm supraventricular tachyarrhythmias due to SCN1B gene mutation).

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Liu ◽  
Z Zhang ◽  
X Zhang ◽  
L Meng ◽  
M Gong ◽  
...  

Abstract Background Oxidative stress contributes to adverse atrial remodeling in diabetes mellitus. This can be prevented by the PPAR-γ agonist pioglitazone through its anti-oxidant and anti-inflammatory effects. Purpose In this study, the molecular mechanisms underlying these effects were investigated. Methods Rabbits were randomly divided into control (C), diabetic (DM), and pioglitazone-treated DM (Pio) groups. Echocardiographic, hemodynamic, electrophysiological, intracellular Ca2+ properties were measured. Serum PPAR-γ levels, serum and tissue oxidative stress and inflammatory markers, mitochondrial morphology, reactive oxygen species (ROS) production rate, respiratory function, and mitochondrial membrane potential (MMP) levels were measured. Protein expression of pro-fibrotic marker transforming growth factor β1 (TGF-β1), and the mitochondrial proteins (PGC-1α, fission and fusion-related proteins) were measured. Results Compared with controls, the DM group demonstrated larger left atrial diameter and fibrosis area associated with a higher incidence of inducible AF. Lower serum PPAR-γ level was associated with lower PGC-1α, higher NF-κB and higher TGF-β1 expression. Mn-SOD protein was not different but lower mitochondrial fission- and fusion-related proteins were detected. Mitochondrial swelling, higher mitochondrial ROS, lower respiratory control rate, lower MMP and higher intracellular Ca2+ transients were observed. In the Pio group, reversal of structural remodeling and lower inducible AF incidence were associated with higher PPAR-γ and PGC-1α. NF-κB and TGF-β1 were lower and biogenesis, fission and fusion-related protein were higher. Mitochondrial structure and function, and intracellular Ca2+ transients were improved. In HL-1 cell line, transfected with PGC-1α siRNA blunted the effect of pioglitazone on Mn-SOD protein expression and MMP collapse in H2O2-treated cells. Conclusion Diabetes mellitus induces adverse atrial structural and electrophysiological remodeling, abnormal Ca2+ handling and mitochondrial damage and dysfunction. Pioglitazone prevented these abnormalities through the PPAR-γ/PGC-1α pathway. Acknowledgement/Funding National Natural Science Foundation of China (No 81570298, 81270245, 30900618 to T.L.)


2014 ◽  
Vol 155 (41) ◽  
pp. 1624-1631 ◽  
Author(s):  
Attila Nemes ◽  
Tamás Forster

Left atrium is not a passive heart chamber, because it has a dynamic motion respecting heart cycle and, in accordance with its stretching, it releases atrial natriuretic peptides. Since in the course of certain invasive procedures the size of left atrium may change substantially, its exact measurement and functional characterization are essential. The aim of the present review is to summarize echocardiographic methods for the assessment of left atrial size and functional parameters. Orv. Hetil., 2014. 155(41), 1624–1631.


2018 ◽  
Author(s):  
Stacy A. Malaker ◽  
Kayvon Pedram ◽  
Michael J. Ferracane ◽  
Elliot C. Woods ◽  
Jessica Kramer ◽  
...  

<div> <div> <div> <p>Mucins are a class of highly O-glycosylated proteins that are ubiquitously expressed on cellular surfaces and are important for human health, especially in the context of carcinomas. However, the molecular mechanisms by which aberrant mucin structures lead to tumor progression and immune evasion have been slow to come to light, in part because methods for selective mucin degradation are lacking. Here we employ high resolution mass spectrometry, polymer synthesis, and computational peptide docking to demonstrate that a bacterial protease, called StcE, cleaves mucin domains by recognizing a discrete peptide-, glycan-, and secondary structure- based motif. We exploited StcE’s unique properties to map glycosylation sites and structures of purified and recombinant human mucins by mass spectrometry. As well, we found that StcE will digest cancer-associated mucins from cultured cells and from ovarian cancer patient-derived ascites fluid. Finally, using StcE we discovered that Siglec-7, a glyco-immune checkpoint receptor, specifically binds sialomucins as biological ligands, whereas the related Siglec-9 receptor does not. Mucin-specific proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of glycoprotein structure and function and for deorphanizing mucin-binding receptors. </p> </div> </div> </div>


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0129274 ◽  
Author(s):  
Bin Xiong ◽  
Dan Li ◽  
Jianling Wang ◽  
Laxman Gyawali ◽  
Jinjin Jing ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Laeya Baldini ◽  
Bruno Charpentier ◽  
Stéphane Labialle

Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ricardo A. Gonzales ◽  
Felicia Seemann ◽  
Jérôme Lamy ◽  
Per M. Arvidsson ◽  
Einar Heiberg ◽  
...  

Abstract Background Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fibrillation, stroke, and diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and observer-dependent. Methods This study presents an automated image processing algorithm for time-resolved LA segmentation in cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views using active contours. The proposed algorithm combines mitral valve tracking, automated threshold calculation, edge detection on a radially resampled image, edge tracking based on Dijkstra’s algorithm, and post-processing involving smoothing and interpolation. The algorithm was evaluated in 37 patients diagnosed mainly with paroxysmal atrial fibrillation. Segmentation accuracy was assessed using the Dice similarity coefficient (DSC) and Hausdorff distance (HD), with manual segmentations in all time frames as the reference standard. For inter-observer variability analysis, a second observer performed manual segmentations at end-diastole and end-systole on all subjects. Results The proposed automated method achieved high performance in segmenting the LA in long-axis cine sequences, with a DSC of 0.96 for 2ch and 0.95 for 4ch, and an HD of 5.5 mm for 2ch and 6.4 mm for 4ch. The manual inter-observer variability analysis had an average DSC of 0.95 and an average HD of 4.9 mm. Conclusion The proposed automated method achieved performance on par with human experts analyzing MRI images for evaluation of atrial size and function.


2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


Sign in / Sign up

Export Citation Format

Share Document