scholarly journals REGARDING THE USE OF THE LEXIN ECOLOGICAL, BIOGENETICAL HEATING TECHNOLOGY TYPE IN ROMANIA

Author(s):  
Mirela Coman ◽  
V. Oros ◽  
Bianca F?l?us ◽  
O. Chinta ◽  
M. Achim

The work presents the results obtained in the frame of an applicative research contract upon the use of ecological, biogenetic heating technology of Lexin kind, in consideration of using it in Romania in different domains of activity. For the climatic conditions of our country, we proposed and perform a measurement program in the following fields: electric expenditure, climatic and micro-climatic, microbial loading of air, effects over plants, effects over pets and prolusions over general health and comfort status of human being. In this work we present the results obtained above the micro-climate measurements (temperature, relative air humidity, microbial loading of air), and effects over soil over from the room in which we used this type of heating system. In the rely of these researches we are in right to affirm that the Lexin heating technology has benefic effects over preserving the homogeneity of the micro-climate conditions, over growth of plants and assures an easily growth of hygiene of medium in which this technology act.

2004 ◽  
Vol 78 (1) ◽  
pp. 139-147 ◽  
Author(s):  
M. Zähner ◽  
L. Schrader ◽  
R. Hauser ◽  
M. Keck ◽  
W. Langhans ◽  
...  

AbstractThis study aimed to assess whether cows are able to cope with the range of climatic conditions they are exposed to in open stables on commercial farms in central Europe. On each of four farms, ten lactating cows were observed over a total of five weeks in winter, spring and summer. Based on continuous measurements of air temperature (–13·8 to 28·7ºC) and relative air humidity (0·26 to 0·99), a mean value of a temperature humidity index (THI) was calculated for each farm and each observation day for night and day.THI had significant effects on skin temperature and body surface temperature (infra-red thermography) both during night and day. Rectal temperature, duration of lying and cortisol concentration in the milk was significantly affected by THI during the day but not during the night. Heart rate and frequency of lying did not significantly covary with THI. Differences between farms and interactions between THI and farm were significant for most parameters. These results suggest that the climatic conditions during the day induced stronger thermoregulatory responses than the conditions during the night. Within the measured range of climatic conditions the cows were hardly exposed to severe cold or heat stress.


Author(s):  
Renáta Toušová ◽  
Jaromír Ducháček ◽  
Luděk Stádník ◽  
Martin Ptáček ◽  
Sylvana Pokorná

The aim of this study was to evaluate influence of climatic conditions represented by daily air temperature and relative air humidity on indicators of Holstein cows’ milk quality and production. The first dataset represented individual milk production in day of milk performance recording (milk kg, fat %, protein %, and somatic cells count thous.*ml−1). The second dataset represented total daily milk characteristics of herd (milk kg, fat %, protein % and somatic cells count thous.*ml−1). A total of 654 Holstein cows were observed and evaluated. Both datasets were evaluated in relation to selected external influences (year, month, average daily air temperature, and average daily relatively air humidity). Statistical analysis was performed using SAS 9.3, and UNIVARIATE, REG and GLM procedure. Three groups of daily air temeperature (< 4.4 °C; 4.4 – 13.2 °C; > 13.2 °C), and daily relative air humidity (< 65.3 %; 65.3 – 80.4 %; > 80.4 %) were conducted for evaluation. Significant (P < 0.05) linear regressions were computed among daily air temperature and all milk production indicators, except of somatic cells count attribute. The highest individual daily milk production (35.94 kg, P < 0.01), and protein content (3.41 %, P < 0.01) were achieved with the highest average daily air temperature. Opposite results were observed for milk yield of herd as well as protein content. Average daily relative air humidity had lower influence on individual and bulk milk samples. The better results were achieved for both datasets (individual and bulk samples) in groups (65.3 – 80.4 %; > 80.4 %) of average daily relative air humidity. Obtained results point out importance of outdoor climatic parameters monitoring and preventive measures of climatic conditions in the stable.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 395
Author(s):  
Michał Słonina ◽  
Dorota Dziurka ◽  
Marta Molińska-Glura ◽  
Jerzy Smardzewski

The main objective of the study was to determine the effect of impregnation of the paper core with acetylated starch on the mechanical properties and absorbed energy in the three-point bending test of wood-based honeycomb panels under varying temperatures and relative air humidity conditions. Nearly six hundred beams in various combinations, three types of facings, three core cells geometries, and two paper thicknesses were tested. The experiment results and their statistical analysis prove a significant relationship between the impregnation of paper with modified starch and mechanical properties. The most effective in absorbing energy, the honeycomb panels, consisted of a core with a wall thickness of 0.25 mm and a particleboard facing.


2018 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. The Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in Central Europe during the Late Glacial, are considered crucial for understanding rapid natural climate change in the past. The sediments from Maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from Lake Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf wax-derived lipid biomarkers (n-alkanes C27 and C29) and hemicellulose-derived sugar biomarkers (arabinose), respectively. Both δ2H and δ18O are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. This enables the coupling of the results via a δ2H-δ18O biomarker paleohygrometer approach and allows calculating past relative air humidity values, which is the major advantage of the applied approach. Fundamental was the finding that the isotopic enrichment of leaf water due to evapotranspiration depends mainly on relative humidity. We hence use the coupled δ2H-δ18O biomarker approach to reconstruct the deuterium-excess of leaf water and in turn relative air humidity values corresponding to the vegetation period and daytime (RHdv). Most importantly, the results of the coupled δ2H-δ18O biomarker paleohygrometer approach (i) support a two-phasing of the Younger Dryas, i.e. a relative wet phase (on Allerød level) followed by a drier Younger Dryas ending, (ii) do not corroborate overall drier climatic conditions characterising the Younger Dryas or a two-phasing with regard to a first dry and cold Younger Dryas phase followed by a warmer period along with increasing precipitation amounts, and (iii) suggest that the amplitude of RHdv changes during the Early Holocene was more pronounced compared to the Younger Dryas. One possible driver for the unexpected Lake Gemündener Maar RHdv variations could be the solar activity.


2019 ◽  
Vol 28 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Anatoliy Rokochynskiy ◽  
Nadia Frolenkova ◽  
Ievgenii Gerasimov ◽  
Oleg Pinchuk ◽  
Nataliia Prykhodko ◽  
...  

In modern conditions, there are cardinal climate changes on the Earth as at the planetary scale, as at the regional level. According to numerous hydrometeorological characteristics and indicators, climatologists specialists concluded that Ukraine also take place significant climatic changes in the last 10–25 years. In complicated natural-technical systems, which include irrigation and drainage systems (IDS) on drained lands, the selection of regime-technological and technical solutions on different levels of the decision including the time, should be based on the appropriate meteorological information for selecting climatologically optimal management strategies for such systems in the long-term and annual periods. The decisive influence on the formation of water and the overall natural reclamation modes of reclaimed land and harvest crops in many cases depends exactly from climate or weather conditions. Thus, it is necessary to have available data about their implementation to the relevant object as for number of previous years retrospective observations and the forecast period of functioning of the object. Therefore, forecasting of weather and climate conditions become an indispensable condition for implementation of assessing the overall effectiveness of IDS operation. To solve this problem we performed large-scale computer experiment for multi-year retrospective and current data observations in the area of Zhytomyr Polissya. Were planned and implemented the following variants of studies – «Base», «Transitional», «Recent», «CCCM», «UKMO». The forecast was done for five years of typical groups of vegetation periods regarding conditions of heat and moisture provision (very wet – 10%, wet – 30%, average – 50%, dry – 70%, very dry – 90%) on such basic meteorological characteristics: air temperature; precipitation; relative air humidity; defi cit of air humidity; photosynthetically active radiation (PAR); coeffi cient of moisture provision (the ratio of precipitation to evapotranspiration). Obtained results of comparative assess-ment of climatic conditions in Zhytomyr Polissya zone, suggests that for most of the basic meteorological parameters, already there are changes that in the short term may exceed 10% of the critical ecological threshold, which will lead to relevant irreversible changes in the state of the environment in the region.


2000 ◽  
Vol 25 (4) ◽  
pp. 329-330
Author(s):  
R.J.B. Hemler ◽  
G.H. Wieneke ◽  
P.H. Dejonckere

2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Author(s):  
R. S. Oliveira ◽  
K. B. A. Pimentel ◽  
M. L. Moura ◽  
C. F. Aragão ◽  
A. S. Guimarães-e-Silva ◽  
...  

Abstract Cutaneous leishmaniasis (CL) is a neglected tropical disease with a wide distribution in the Americas. Brazil is an endemic country and present cases in all states. This study aimed to describe the occurrence, the underlying clinical and epidemiological factors, and the correlation of climatic variables with the frequency of reported CL cases in the municipality of Caxias, state of Maranhão, Brazil. This is a retrospective and descriptive epidemiological study based on data extracted from the Brazilian Information System of Diseases Notification, from 2007 to 2017. Maximum and minimum temperature, precipitation, and relative air humidity data were provided by the Brazilian National Institute of Meteorology. A total of 201 reported autochthonous CL cases were analyzed. The predominance of cases was observed in males (70.1%). The age range between 31 and 60 years old was the most affected, with 96 cases (47.9%). Of the total number of registered cases, 38.8% of the affected individuals were engaged in agriculture-related activities. The georeferenced distribution revealed the heterogeneity of disease occurrence, with cases concentrated in the Western and Southern regions of the municipality. An association was detected between relative air humidity (monthly mean) and the number of CL cases per month (p = 0.04). CL continues to be a concerning public health issue in Caxias. In this context, there is a pressing need to strengthen measures of prevention and control of the disease through the network of health services of the municipality, considering local and regional particularities.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2827
Author(s):  
Pavla Mocová ◽  
Jitka Mohelníková

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO2. It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.


Sign in / Sign up

Export Citation Format

Share Document