scholarly journals Alterations in leaf anatomy, quality, and quantity of flavonols and photosynthetic pigments in Nigella sativa L. subjected to drought and salinity stresses

2021 ◽  
Vol 49 (3) ◽  
pp. 12398
Author(s):  
Shiva AGHAJANZADEH-GHESHLAGHI ◽  
Maryam PEYVANDI ◽  
Ahmad MAJD ◽  
Hossein ABBASPOUR

Nigella sativa was widely used for nutritional and medicinal purposes. The present study investigated the effect of drought and salinity stresses on anatomical leaves structure and some biochemical properties to increase the secondary metabolites. For salt stress plants were treated with NaCl (30, 60 mM), and for drought stress plants were irrigated daily (control), once every two days (2DI) and once every three days (3DI). Compared to control plants, 2DI, 3DI, and NaCl 60 mM treatments increase significantly leaf rutin content, while the amount of rutin in seeds of NaCl 60 mM treated plants showed a significant decrease. 3DI treatment also significantly increased rutin content in seeds compared to NaCl 30 mM and control plants.  The maximum level of quercetin (0.58 mg g−1 DW), kaempferol (0.16 mg g−1 DW), and myricetin (0.04 mg g−1 DW) in leaves were gained in both NaCl treatments. However, the flavonol components were affected more at salinity conditions rather than drought. In all treated plants, the amount of these compounds in leaves was more than in seeds. The highest amount of total phenol (130 mg g−1 DW), flavonoids (11.4 mg g−1 DW), and carotenoid content (1.55 mg g−1 DW) of leaves were observed under 2DI stress. Treated plants probably encountered different changes in the anatomical structure of leaves, including the decrease of phloem area, reducing vascular bundles and diameters, decreasing the number, and increasing the volume of cortex cells. The study also corroborates the cooperation between increasing the antioxidant capacity with the total flavonoid, rutin, and quercetin. Results indicated a higher sensitivity of N. sativa to drought stress than salinity stress and indicated that moderate salinity and drought could enhance secondary metabolites of seeds in this plant. The formation of potent antioxidants via the treatments could be worthy for pharmaceutical industries.

2016 ◽  
Vol 6 (1) ◽  
pp. 905-913
Author(s):  
Bahram Majd Nassiry ◽  
Neda Mohammadi

    One of the effects of reducing water content on soil is reduction of growth and development of seedlings and variation of field development. Seed priming technique has been known as a challenge to improve germination and seedling emergence under different environmental stresses. The objectives of this research were to evaluate the effects of osmo-priming on germination characteristics and changes of proline, protein and catalase activity of Ocimum basilicum seeds. Results showed that drought stress reduced the germination characteristics and drought stress in -8 bar was the critical stress.  Priming treatments were include KNO3, PEG and NaCl by 0, -4 and -8 bar concentrations. The seeds were primed with those materials for 8 and 16 hours. The highest germination characteristics were obtained from nitrate potassium in -8 bar for 16 hours priming. Therefore the best seed treatment under drought stress during germination was obtained from the osmo-primed with -8 bar nitrate potassium for 16 hours. The drought stress increased proline and catalase activity but reduced total protein. Priming treatment increases proline, total protein and catalase activity under drought and control conditions. It is concluded that priming results in improvement in germination components of Ocimum basilicum in drought stress conditions and increases the resistance to drought stress with improvement of proline, protein and catalase activity in germination phase.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1784
Author(s):  
Md. Abdul Hannan ◽  
Md. Ataur Rahman ◽  
Abdullah Al Mamun Sohag ◽  
Md. Jamal Uddin ◽  
Raju Dash ◽  
...  

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb–drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


Respuestas ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 39-48
Author(s):  
Viviana Andrea Velasco Arango ◽  
John Edwin Sotelo Barbosa ◽  
Luis Eduardo Ordoñez Santos ◽  
José Igor Hleap Zapata

Papaya (Carica papaya L) is some fruit rich in antioxidants and an important source for obtaining bioactive compounds. Its production, worldwide for the year 2017, was 13.3 million tons. In its industrial processing is obtained approximately between 15 and 20%, in relation to the weight of the fruit, of husks or epicarp, which are likely to be used in order to obtain organic compounds such as carotenoids and polyphenols, among others, contributing, in addition, to mitigate the effects on the environment, since generally, these shells are thrown into landfills of solid waste, generating serious problems of environmental pollution. The objective of this research was to characterize physicochemically the carotenoid pigments obtained from the papaya epicarp. A papaya epicarp flour was processed and it was determined, both in it and in the fresh epicarp, pH, titratable acidity, moisture content and dry matter. Likewise, the carotenoid content, the antioxidant activity and the content of phenolic compounds were determined. The results showed high values for physicochemical parameters. The content of carotenoid compounds for the fractions of β-carotene, α-carotene, β-cryptoxanthin, Zeaxanthin and lycopene ranged between 8,587 and 4,070 mg/100g of epicarp, with the highest value corresponding to β-cryptoxanthin and the lowest value the lycopene fraction. The antioxidant activity, expressed as inhibition of the DPPH radical, gave a value of 58.77 ± 3.038 IC50 mg/ml. The content of phenolic compounds measured in mg of gallic acid equivalents/g gave a result of 24.948 ± 0.728. The data obtained allow us to conclude that said flour can be used as a source of bioactive compounds and natural pigments both in the food industry and in the technical and pharmaceutical industries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Boris Lazarević ◽  
Zlatko Šatović ◽  
Ana Nimac ◽  
Monika Vidak ◽  
Jerko Gunjača ◽  
...  

Basil is one of the most widespread aromatic and medicinal plants, which is often grown in drought- and salinity-prone regions. Often co-occurrence of drought and salinity stresses in agroecosystems and similarities of symptoms which they cause on plants complicates the differentiation among them. Development of automated phenotyping techniques with integrative and simultaneous quantification of multiple morphological and physiological traits enables early detection and quantification of different stresses on a whole plant basis. In this study, we have used different phenotyping techniques including chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning, aiming to quantify changes in basil phenotypic traits under early and prolonged drought and salinity stress and to determine traits which could differentiate among drought and salinity stressed basil plants. Ocimum basilicum “Genovese” was grown in a growth chamber under well-watered control [45–50% volumetric water content (VWC)], moderate salinity stress (100 mM NaCl), severe salinity stress (200 mM NaCl), moderate drought stress (25–30% VWC), and severe drought stress (15–20% VWC). Phenotypic traits were measured for 3 weeks in 7-day intervals. Automated phenotyping techniques were able to detect basil responses to early and prolonged salinity and drought stress. In addition, several phenotypic traits were able to differentiate among salinity and drought. At early stages, low anthocyanin index (ARI), chlorophyll index (CHI), and hue (HUE2D), and higher reflectance in red (RRed), reflectance in green (RGreen), and leaf inclination (LINC) indicated drought stress. At later stress stages, maximum fluorescence (Fm), HUE2D, normalized difference vegetation index (NDVI), and LINC contribute the most to the differentiation among drought and non-stressed as well as among drought and salinity stressed plants. ARI and electron transport rate (ETR) were best for differentiation of salinity stressed plants from non-stressed plants both at early and prolonged stress.


2021 ◽  
Vol 5 (2) ◽  
pp. 1208-1215
Author(s):  
Tuan Minh Nguy ◽  
Thang Thanh Tran ◽  
Huong Thanh Tran

In recent years, drought stress was strongly affected on the development and yield of tomatoes. There are increasing interests in the study of physiological transformations in adaption to stress in plants In this study, effects of drought stress (mannitol at different concentration) on the development of tomato shoot were studied. Morphological and physiological changes during the development of shoot under drought stress conditions were analyzed. Based on the analysis results, the combination of cytokinin and gibberellin was treated to increase the drought stress tolerance of plants. Results showed that mannitol at 20 g/L induced tomato drought stress. Shoot height, number of leaves, leaf area, and the number of roots significantly decreased in the drought stress condition compared to the control. The formation superoxide (O2-) and hydrogen peroxide (H2O2) occurred in the meristem, elongation region and cap of the roots in the drought stress condition instead of only cap root in the control. In the drought stress condition, there was an increase in respiration intensity, proline and carotenoid content, and abscisic acid activity. In contrast, the content of chlorophyll, photosynthesis intensity, cytokinin and gibberellin activity decreased in comparison with the control. The combination treatment of zeatin 0.5 mg/L and GA3 0.5 mg/L improved the drought stress tolerance of plants. The shoot height, number of leaves, leaf area and number of roots of the treated plants were higher than those of the control plants.


1985 ◽  
Vol 63 (4) ◽  
pp. 711-715 ◽  
Author(s):  
R. Hodgins ◽  
R. B. van Huystee

The effect of chilling temperatures on the porphyrin pathway leading to chlorophyll was studied in Seneca Chief hybrid sweet corn. One-week-old seedlings grown at 28 °C in a 14 h light: 10 h dark photoperiod synthesize negligible amounts of chlorophyll when exposed to 12 °C for a subsequent 6 d. When the chilled plant is then brought back to 28 °C, chlorophyll synthesis is restored to control levels. Little difference in carotenoid content was detected between chill-stressed and control tissue even after 4 d of stress. Small differences in the chlorophyll content per 106 chloroplasts could be detected between stressed and control seedlings. Etiolated seedlings synthesize negligible amounts of chlorophyll or its precursors when illuminated at 12 °C. Incubation of tissue with aminolevulinic acid at various temperatures from 12 to 22 °C resulted in an accumulation of precursors comparable to 28 °C control tissue. The ability of etiolated tissue to accumulate aminolevulinic acid was negligible when illuminated at 12 °C as compared with that in tissue illuminated at 28 °C.


Scientifica ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Małgorzata Margas ◽  
Agnieszka I. Piotrowicz-Cieślak ◽  
Dariusz J. Michalczyk ◽  
Katarzyna Głowacka

Antibiotics are a new type of contaminants found in the environment. They are increasingly used in farm animal production systems and may accumulate in crops, limiting the plant growth rate and nutritive value. The aim of this study was to determine the effects of tetracycline (TC) on physiological and biochemical properties of pea seedlings. The presence of TC in the soil during 24 hours did not result in any distinct changes of the seedlings. However, after five days (120 h) of soil TC action, the seedling appearance and metabolic activities were significantly affected. Leaves lost their green coloration as a result of a 38% degradation of their chlorophyll. Total protein was isolated from shoots of pea grown for 120 h in TC-supplemented perlite (250 mg × L−1) or perlite with no TC (control plants). The 2D electrophoretic maps of proteins from non-TC shoots contained 326 spots, whereas maps of shoot proteins from TC-treated seedlings contained only 316 spots. The identity of 26 proteins was determined. The intensity of most proteins (62%) increased. This was particularly visible with diphosphate kinase, superoxide dismutase [Cu-Zn], peroxiredoxin, and glutathione S-transferase. A distinctly increased quantity of a protein involved in photosynthesis (photosystem II stability/assembly factor HCF136) was also noted. One protein was detected only in shoots of TC-treated plants (as opposed to controls); however, it could not be identified. Moreover, at the highest concentration of TC (250 mg × L−1 of perlite), a sharp increase in free-radical content was observed along with the amount of callose deposited in vascular bundles of leaves and roots and the occurrence of masses of dead cells in roots. It was found, therefore, that tetracycline which has been known for inhibiting predominantly the attachment of aminoacyl-tRNA to the ribosomal acceptor in bacteria can disturb diverse metabolic pathways in plants.


2020 ◽  
Vol 10 (10) ◽  
pp. 3369
Author(s):  
Pasquale Crupi ◽  
Marika Santamaria ◽  
Fernando Vallejo ◽  
Francisco A. Tomás-Barberán ◽  
Gianvito Masi ◽  
...  

Carotenoids are important secondary metabolites in wine grapes and play a key role as potential precursors of aroma compounds (i.e., C13-norisoprenoids), which have a high sensorial impact in wines. There is scarce information about the influence of pre-harvest inactivated yeast treatment on the norisoprenoid aroma potential of grapes. Thus, this work aimed to study the effect of the foliar application of yeast extracts (YE) to Negro Amaro and Primitivo grapevines on the carotenoid content during grape ripening and the difference between the resulting véraison and maturity (ΔC). The results showed that β-carotene and (allE)-lutein were the most abundant carotenoids in all samples, ranging from 60% to 70% of total compounds. Their levels, as well as those of violaxanthin, (9′Z)-neoxanthin, and 5,6-epoxylutein, decreased during ripening. This was especially observed in treated grapes, with ΔC values from 2.6 to 4.2-fold higher than in untreated grapes. Besides this, a principal components analysis (PCA) demonstrated that lutein, β-carotene, and violaxanthin and (9′Z)-neoxanthin derivatives principally characterized Negro Amaro and Primitivo, respectively. Thereby, the YE treatment has proved to be effective in improving the C13-norisoprenoid aroma potentiality of Negro Amaro and Primitivo, which are fundamental cultivars in the context of Italian wine production.


2014 ◽  
Vol 50 (No. 1) ◽  
pp. 43-51 ◽  
Author(s):  
R. Kabiri ◽  
F. Nasibi ◽  
H. Farahbakhsh

To study the effect of salicylic acid on photosynthetic pigments (chlorophyll a, b, total chlorophyll, and carotenoids), polyphenol compounds, anthocyanin, flavonoids, phenylalanine ammonia-lyase activity, malondialdehyde, lipoxygenase activity, electrolyte leakage, relative water content, soluble sugar contents, and protein content of black cumin (Nigella sativa) under drought stress in hydroponic culture, an experiment was conducted as a completely randomised design in a factorial arrangement with three replicates. Experimental treatments included salicylic acid at three levels (0, 5, and 10µM) and drought stress (induced by polyethylene glycol 6000) at four levels (0, –0.2, –0.4, and –0.6 MPa). Results showed that salicylic acid application through the root medium increased drought tolerance of black cumin seedlings. Plants pre-treated with salicylic acid exhibited slight injury symptoms whereas those not pre-treated with salicylic acid had moderate damage and lost considerable portions of their foliage. In conclusion, salicylic acid could protect the Nigella plant against drought stress through increasing of all the mentioned traits, and 10µM salicylic acid was the most effective level under both conditions.


Sign in / Sign up

Export Citation Format

Share Document