scholarly journals Landfill leachate treatment using activated carbon obtained from coffee waste

2019 ◽  
Vol 24 (4) ◽  
pp. 833-842 ◽  
Author(s):  
Rodrigo Poblete Chávez ◽  
Ernesto Cortes Cortés Pizarro ◽  
Yolanda Luna Galiano

ABSTRACT A set of experiments were carried out in order to establish and evaluate the potential of activated carbon, produced from coffee waste in adsorption process, in the depuration of landfill leachate. Different reagents were studied in the activation of carbon: HCl, HCl + H2O2, H3PO4, H3PO4 + H2O2, all with an impregnation rate of 1:1. The activated carbon that showed the best global results was activated with H3PO4, obtaining a 51.0, 32.8, 66.0, 81.0 and 97.1% elimination of chemical oxygen demand, ammonia, total chlorine, bromine and copper, respectively. This activated carbon has a total pore area of 4.85 m2/g and a median pore diameter of 65.32 micrometers. When different loads of this carbon were placed in a stirrer system in contact with landfill leachate, with the aim of evaluating the effect of the adsorption load and contact time, the concentration of ammonia decreased from the beginning of the adsorption process to the end of it, and the removal of ammonia increased with the increase in the adsorbent load. However, the trend of the amount adsorbed per unit mass decreased with increased dosage. The model Freundlich equilibrium isotherm fits experimental data adequately, giving R2 values of 0.95, 1/n of 0.5183, and a K value of 7.08*10-5 L/g, being favourable for adsorption process.

Author(s):  
Rajani Ghaju Shrestha ◽  
Daisuke Inoue ◽  
Michihiko Ike

Abstract A constructed wetland (CW) is a low-cost, eco-friendly, easy-to-maintain, and widely applicable technology for treating various pollutants in the waste landfill leachate. This study determined the effects of the selection and compiling strategy of substrates used in CWs on the treatment performance of a synthetic leachate containing bisphenol A (BPA) as a representative recalcitrant pollutant. We operated five types of lab-scale vertical-flow CWs using only gravel (CW1), a sandwich of gravel with activated carbon (CW2) or brick crumbs (CW3), and two-stage hybrid CWs using gravel in one column and activated carbon (CW4) or brick crumbs (CW5) in another to treat synthetic leachate containing BPA in a 7-d sequential batch mode for 5 weeks. CWs using activated carbon (CW2 and CW4) effectively removed ammonium nitrogen (NH4-N) (99–100%), chemical oxygen demand (COD) (93–100%), and BPA (100%), indicating that the high adsorption capacity of activated carbon was the main mechanism involved in their removal. CW5 also exhibited higher pollutant removal efficiencies (NH4-N: 94–99%, COD: 89–98%, BPA: 89–100%) than single-column CWs (CW1 and CW3) (NH4-N: 76–100%, COD: 84–100%, BPA: 51–100%). This indicates the importance of the compiling strategy along with the selection of an appropriate substrate to improve the pollutant removal capability of CWs.


Author(s):  
Siti Nor Farhana Zakaria

Landfill leachate is a hazardous pollutant generated from a landfill site. Discharge of landfill leachate has caused a major contamination to the environment and detrimental to human health. This chapter introduces an alternative method to treat recalcitrant pollutant in leachate by using ozonation with catalyst. The production of hydroxyl radical in ozonation was not enough to oxidize complex molecular structure in the leachate. Theoretically, the addition of catalyst enhances the capacity of radical and accelerates the chemical reaction. The effectiveness of ozonation with Fenton (O3/Fenton), hydrogen peroxide (O3/H2O2), and zirconium tetrachloride (O3/ZrCl4) in removing pollutant such as chemical oxygen demand (COD), color, and improvement of biodegradability by using this process were also discussed in this chapter. Comparison in term of treatment cost and benefits of the application of chemical as catalyst are briefly elaborated at the end of this chapter.


2019 ◽  
Vol 80 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ahmed Samir Naje ◽  
Mohammed A. Ajeel ◽  
Isam Mohamad Ali ◽  
Hussein A. M. Al-Zubaidi ◽  
Peter Adeniyi Alaba

Abstract In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 277-284 ◽  
Author(s):  
N. Schwarzenbeck ◽  
K. Leonhard ◽  
P.A. Wilderer

At the sanitary landfill of the city of Penzberg (Germany), two diverse approaches to leachate treatment were studied as parts of a three-stage treatment concept. The performance of a simple aerobic pond was compared to that of an advanced multistage treatment unit, the latter comprising a membrane biological reactor and a two-stage activated carbon filter. For 274 days of the year (75%) the pond was able to provide sufficient treatment even under cold weather conditions. For temperatures lower than 5°C, a higher biomass content and temporal storage of the raw leachate (e.g. increasing hydraulic retention time) could close the gap of insufficient treatment. In contrast, the advanced treatment system could only accomplish limited treatment capabilities due to insufficient maintenance, low loading conditions and deficient coordination between the individual treatment steps. As a result, degradation rates were low and operational problems frequent. Limits for Ntot were exceeded regularly (Ntot,e = 60–70 mg/L), throughput broke down and excessive nitrite production occurred (NO2-Ne = 10 mg/L) as a result of microbial activity inside the activated carbon filters. This case study clearly suggests aerobic ponds as an appropriate solution for the treatment of landfill leachate in areas where operational independence is essential.


2021 ◽  
Vol 37 (4) ◽  
pp. 922-927
Author(s):  
A. Kistan ◽  
V. Kanchana ◽  
N. K. Geetha ◽  
G. Infant Sujitha

The following study explains that the adsorption efficiency of activated carbon used by Groundnut foliage and groundnut husk for the deportation of COD (Chemical Oxygen demand) from groundwater collected from in and around industrial areas of Vellore district was investigated with different activating conditions (Activating agent- KOH, ZnCl2 and H3PO4; Impregnation ratio-1:1,1:2,1:2; and activation temeperture-500-700°C. The activated carbon prepared based on optimized condition has well-developed pore structure and functional groups which is confirmed from SEM image and FTIR analysis respectively. The adsorption equilibrium was reached in 240 min with the isotherm data fitted well in both the model such as Langmuir model and Freundlich’s model indicating chemisorption’s adsorption for the activated carbon. Moreover, the adsorption process was exothermic accompanied by a decrease in irregularity. Furthermore, the adsorption kinetic study indicated that the adsorption process of the prepared sample follows the pseudo-second-order kinetic model compare to the pseudo-first -order kinetic model


1996 ◽  
Vol 34 (9) ◽  
pp. 33-40 ◽  
Author(s):  
J. Fettig ◽  
H. Stapel ◽  
C. Steinert ◽  
M. Geiger

Landfill leachate pretreated in an aerobic biological stage was studied with respect to the adsorption behaviour of its organic components with and without preoxidation by different amounts of ozone. Isotherm data evaluated by adsorption analysis showed that the fractions of non-adsorbable and weakly adsorbable species had been increased after preoxidation. As a result, the carbon capacity in a fixed-bed adsorption process was expected to be significantly lower for preoxidized leachate. This conclusion was confirmed by data from column experiments. The breakthrough curves under operating conditions typical for leachate treatment could be predicted quite well by the homogeneous surface diffusion model when no preoxidation was applied. After preozonation about 40% of the remaining organic substances were biodegradable. Data evaluation revealed that biodegradation took place inside the activated carbon beds. Therefore the total removal of ozonated leachate in activated carbon columns will be higher than the removal due to adsorption processes. An economic analysis must show in any practical case whether a combination of preoxidation and adsorption will be more cost-efficient than either of the single processes. The modelling technique applied in this study can be a useful tool for that purpose.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3023
Author(s):  
Liliana San-Pedro ◽  
Roger Méndez-Novelo ◽  
Emanuel Hernández-Núñez ◽  
Manuel Flota-Bañuelos ◽  
Jorge Medina ◽  
...  

Sanitary landfill leachates usually have characteristics that depend on the region where they are generated and according to the age of the landfill, which is why a unique treatment for their sanitation has not been found. However, the adsorption preceded by the Fenton process has been proven to be highly efficient at removing contaminants. In this study, the adsorptive capacity of two types of activated carbon, granular and powdered, was analyzed to determine which was more efficient in the adsorption stage in the Fenton-adsorption process. Likewise, its behavior was analyzed using three isotherm models (Langmuir, Freundlich and Temkin), testing the raw leachate and the Fenton-treated one with both carbons. The adsorption that is carried out on the carbons is better adjusted to the Freundlich and Temkin models. It concludes that multilayers, through the physical adsorption, carry out the adsorption of pollutants on the surface of the carbons. The results show that, statistically, granular activated carbon is more efficient at removing chemical oxygen demand (COD), and powdered activated carbon removes color better. Finally, an adsorption column was designed for the Fenton-adsorption process that was able to remove 21.68 kgCOD/kg carbon. Removal efficiencies for color and COD were >99%.


1995 ◽  
Vol 32 (3) ◽  
pp. 119-128 ◽  
Author(s):  
Craig D. Martin ◽  
Keith D. Johnson

Recently in the USA, the Solid Waste Industry has undergone specific changes in landfill regulations. The Federal Resource Conservation and Recovery Acts (RCRA); and EPA subtitle D regulations, as well as stringent State regulations, impose minimum criteria for municipal solid waste facilities in the areas of location, operation, groundwater monitoring, and leachate management. In conjunction with these State and Federal mandates the University of West Florida developed a leachate treatment technique utilizing extended aeration and surface-flow constructed wetlands. Sampling of water quality has occurred monthly since February 1992. Parameters examined include: Nitrogen (NH3,), Total Suspended Solids (TSS), Total Phosphate (TPO4), Total Organic Carbon (TOC), pH, Alkalinity, and Chlorides. Chemical Oxygen Demand (COD), Total and Fecal Coliforms, Priority Pollutant Metals, and limited organic analytes are sampled on a less frequent basis. Samples are collected at a raw leachate site (L0), primary aerated lagoon (L1), and 6 stations within the 1.1 hectare constructed wetland complex (S1; W1; W3; W5; W7; W9) and one sandfilter (SF) location. Results thus far indicate removal percentages of the tested analytes average between 64% and 99%. This data suggests various physical, microbiological and chemical processes occurring within the aerated lagoon and constructed wetlands can provide an effective alternative to standard techniques for landfill leachate treatment and disposal. The methods as described have proven to be ideal for the circumstances occurring at the Perdido Landfill.


Sign in / Sign up

Export Citation Format

Share Document