scholarly journals Atrophin Proteins: An Overview of a New Class of Nuclear Receptor Corepressors

2008 ◽  
Vol 6 (1) ◽  
pp. nrs.06009 ◽  
Author(s):  
Lei Wang ◽  
Chih-Cheng Tsai

The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases.

2020 ◽  
Vol 27 (2) ◽  
pp. R35-R50 ◽  
Author(s):  
Alastair Davies ◽  
Amina Zoubeidi ◽  
Luke A Selth

Tumours adapt to increasingly potent targeted therapies by transitioning to alternative lineage states. In prostate cancer, the widespread clinical application of androgen receptor (AR) pathway inhibitors has led to the insurgence of tumours relapsing with a neuroendocrine phenotype, termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests that this lineage reprogramming is driven largely by dysregulation of the epigenome and transcriptional networks. Indeed, aberrant DNA methylation patterning and altered expression of epigenetic modifiers, such as EZH2, transcription factors, and RNA-modifying factors, are hallmarks of NEPC tumours. In this review, we explore the nature of the epigenetic and transcriptional landscape as prostate cancer cells lose their AR-imposed identity and transition to the neuroendocrine lineage. Beyond addressing the mechanisms underlying epithelial-to-neuroendocrine lineage reprogramming, we discuss how oncogenic signaling and metabolic shifts fuel epigenetic/transcriptional changes as well as the current state of epigenetic therapies for NEPC.


2020 ◽  
Vol 13 (663) ◽  
pp. eabd8379
Author(s):  
Heba Ali ◽  
Lena Marth ◽  
Dilja Krueger-Burg

Postsynaptic organizational protein complexes play central roles both in orchestrating synapse formation and in defining the functional properties of synaptic transmission that together shape the flow of information through neuronal networks. A key component of these organizational protein complexes is the family of synaptic adhesion proteins called neuroligins. Neuroligins form transsynaptic bridges with presynaptic neurexins to regulate various aspects of excitatory and inhibitory synaptic transmission. Neuroligin-2 (NLGN2) is the only member that acts exclusively at GABAergic inhibitory synapses. Altered expression and mutations in NLGN2 and several of its interacting partners are linked to cognitive and psychiatric disorders, including schizophrenia, autism, and anxiety. Research on NLGN2 has fundamentally shaped our understanding of the molecular architecture of inhibitory synapses. Here, we discuss the current knowledge on the molecular and cellular functions of mammalian NLGN2 and its role in the neuronal circuitry that regulates behavior in rodents and humans.


Author(s):  
Cristina Pignocchi ◽  
Alexander Ivakov ◽  
Regina Feil ◽  
Martin Trick ◽  
Marilyn Pike ◽  
...  

Abstract Plant roots depend on sucrose imported from leaves as the substrate for metabolism and growth. Sucrose and hexoses derived from it are also signalling molecules that modulate growth and development, but the importance for signalling of endogenous changes in sugar levels is poorly understood. We report that reduced activity of cytosolic invertase, which converts sucrose to hexoses, leads to pronounced metabolic, growth and developmental defects in roots of Arabidopsis (Arabidopsis thaliana) seedlings. In addition to altered sugar and downstream metabolite levels, roots of cinv1 cinv2 mutants have reduced elongation rates, cell and meristem size, abnormal meristematic cell division patterns, and altered expression of thousands of genes of diverse functions. Provision of exogenous glucose to mutant roots repairs relatively few of the defects. The extensive transcriptional differences between mutant and wild-type roots have hallmarks of both high sucrose and low hexose signalling. We conclude that the mutant phenotype reflects both low carbon availability for metabolism and growth and complex sugar signals derived from elevated sucrose and depressed hexose levels in the cytosol of mutant roots. Such reciprocal changes in endogenous sucrose and hexose levels potentially provide rich information about sugar status that translates into flexible adjustments of growth and development.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Lucía Fuentes ◽  
Tamás Rőszer ◽  
Mercedes Ricote

Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.


2021 ◽  
Author(s):  
Sanne C. Lith ◽  
Carlie J.M. de Vries

Abstract Nur77 is a nuclear receptor that has been implicated as a regulator of inflammatory disease. The expression of Nur77 increases upon stimulation of immune cells and is differentially expressed in chronically inflamed organs in human and experimental models. Furthermore, in a variety of animal models dedicated to study inflammatory diseases, changes in Nur77 expression alter disease outcome. The available studies comprise a wealth of information on the function of Nur77 in diverse cell types and tissues. Negative cross-talk of Nur77 with the NFκB signaling complex is an example of Nur77 effector function. An alternative mechanism of action has been established, involving Nur77-mediated modulation of metabolism in macrophages as well as in T cells. In this review, we summarize our current knowledge on the role of Nur77 in atherosclerosis, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and sepsis. Detailed insight in the control of inflammatory responses will be essential in order to advance Nur77-targeted therapeutic interventions in inflammatory disease.


2016 ◽  
Vol 23 (11) ◽  
pp. T85-T108 ◽  
Author(s):  
Damien A Leach ◽  
Sue M Powell ◽  
Charlotte L Bevan

Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease – hence the quest for new effective therapies for ‘castrate-resistant’ prostate cancer (CRPC). Studies into what pathways can drive tumour recurrence under these conditions has identified several other nuclear receptor signalling pathways as potential drivers or modulators of CRPC.The nuclear receptors constitute a large (48 members) superfamily of transcription factors sharing a common modular functional structure. Many of them are activated by the binding of small lipophilic molecules, making them potentially druggable. Even those for which no ligand exists or has yet been identified may be tractable to activity modulation by small molecules. Moreover, genomic studies have shown that in models of CRPC, other nuclear receptors can potentially drive similar transcriptional responses to the androgen receptor, while analysis of expression and sequencing databases shows disproportionately high mutation and copy number variation rates among the superfamily. Hence, the nuclear receptor superfamily is of intense interest in the drive to understand how prostate cancer recurs and how we may best treat such recurrent disease. This review aims to provide a snapshot of the current knowledge of the roles of different nuclear receptors in prostate cancer – a rapidly evolving field of research.


2019 ◽  
Vol 20 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Yang Wang ◽  
Qiang Liu ◽  
Fuchou Tang ◽  
Liying Yan ◽  
Jie Qiao

Drastic epigenetic reprogramming occurs during human gametogenesis and early embryo development. Advances in low-input and single-cell epigenetic techniques have provided powerful tools to dissect the genome-wide dynamics of different epigenetic molecular layers in these processes. In this review, we focus mainly on the most recent progress in understanding the dynamics of DNA methylation, chromatin accessibility, and histone modifications in human gametogenesis and early embryo development. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, infertility, and long-term health issues in offspring. Aspects of the external environment, including assisted reproductive technology procedures, parental diets, and unhealthy parental habits, may disturb the epigenetic reprogramming processes and lead to an aberrant epigenome in the offspring. Here, we review the current knowledge of the potential risk factors of aberrant epigenomes in humans.


2006 ◽  
Vol 397 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Patrick J. E. C. Wijchers ◽  
J. Peter H. Burbach ◽  
Marten P. Smidt

Forkhead proteins comprise a highly conserved family of transcription factors, named after the original forkhead gene in Drosophila. To date, over 100 forkhead genes have been identified in a large variety of species, all sharing the evolutionary conserved ‘forkhead’ DNA-binding domain, and the cloning and characterization of forkhead genes have continued in recent years. Forkhead transcription factors regulate the expression of countless genes downstream of important signalling pathways in most, if not all, tissues and cell types. Recent work has provided novel insights into the mechanisms that contribute to their functional diversity, including functional protein domains and interactions of forkheads with other transcription factors. Studies using loss- and gain-of-function models have elucidated the role of forkhead factors in developmental biology and cellular functions such as metabolism, cell division and cell survival. The importance of forkhead transcription factors is underlined by the developmental defects observed in mutant model organisms, and multiple human disorders and cancers which can be attributed to mutations within members of the forkhead gene family. This review provides a comprehensive overview of current knowledge on forkhead transcription factors, from structural organization and regulatory mechanisms to cellular and developmental functions in mice and humans. Finally, we will discuss how novel insights gained from involvement of ‘Foxes’ in the mechanisms underlying human pathology may create new opportunities for treatment strategies.


2019 ◽  
Vol 20 (21) ◽  
pp. 5449 ◽  
Author(s):  
Anne I. Krämer ◽  
Christoph Handschin

Epigenetic changes are a hallmark of short- and long-term transcriptional regulation, and hence instrumental in the control of cellular identity and plasticity. Epigenetic mechanisms leading to changes in chromatin structure, accessibility for recruitment of transcriptional complexes, and interaction of enhancers and promoters all contribute to acute and chronic adaptations of cells, tissues and organs to internal and external perturbations. Similarly, the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is activated by stimuli that alter the cellular energetic demand, and subsequently controls complex transcriptional networks responsible for cellular plasticity. It thus is of no surprise that PGC-1α is under the control of epigenetic mechanisms, and constitutes a mediator of epigenetic changes in various tissues and contexts. In this review, we summarize the current knowledge of the link between epigenetics and PGC-1α in health and disease.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2295
Author(s):  
Bradley A. Creamer ◽  
Shelly N. B. Sloan ◽  
Jennifer F. Dennis ◽  
Robert Rogers ◽  
Sidney Spencer ◽  
...  

Pregnane X receptor (PXR, NR1I2) is a member of the ligand-activated nuclear receptor superfamily. This receptor is promiscuous in its activation profile and is responsive to a broad array of both endobiotic and xenobiotic ligands. PXR is involved in pivotal cellular detoxification processes to include the regulation of genes that encode key drug-metabolizing cytochrome-P450 enzymes, oxidative stress response, as well as enzymes that drive steroid and bile acid metabolism. While PXR clearly has important regulatory roles in the liver and gastrointestinal tract, this nuclear receptor also has biological functions in breast tissue. In this review, we highlight current knowledge of PXR’s role in mammary tumor carcinogenesis. The elevated level of PXR expression in cancerous breast tissue suggests a likely interface between aberrant cell division and xeno-protection in cancer cells. Moreover, PXR itself exerts positive effect on the cell cycle, thereby predisposing tumor cells to unchecked proliferation. Activation of PXR also plays a key role in regulating apoptosis, as well as in acquired resistance to chemotherapeutic agents. The repressive role of PXR in regulating inflammatory mediators along with the existence of genetic polymorphisms within the sequence of the PXR gene may predispose individuals to developing breast cancer. Further investigations into the role that PXR plays in driving tumorigenesis are needed.


Sign in / Sign up

Export Citation Format

Share Document