scholarly journals CoCrMo alloy as biomaterial for bone reconstruction in oral and maxillofacial surgery: A scoping review.

2020 ◽  
Vol 9 (4) ◽  
pp. 336-349
Author(s):  
Jésica Zuchuat ◽  
◽  
Andrea Cura ◽  
Adriana Manzano ◽  
Oscar Decco ◽  
...  

Antecedentes: La osteointegración ha permitido un gran avance en biomateriales y técnicas, y ha contribuido un mayor uso de implantes dentales. Sin embargo, la existencia de un nivel óseo insuficiente es un problema frecuente y crea una base anatómicamente menos favorable para la colocación de implantes. El primer procedimiento quirúrgico debe comprender la reconstrucción de la altura del hueso alveolar. Las aleaciones de CoCrMo se consideran hoy en día como materiales altamente resistentes a la corrosión y biocompatibles en odontología y, por lo tanto, se ha sugerido como un biomaterial adecuado para la regeneración ósea guiada y la ingeniería de tejidos. Objetivo: Determinar el uso de la aleación CoCrMo para dispositivos implantables en cirugía oral y maxilofacial y discutir sobre el potencial de esta aleación para la regeneración y reparación ósea a través de una revisión de alcance. Material y Métodos: La búsqueda se realizó utilizando varias bases de datos, incluidas PubMed, Thomson Reuters y Scopus. Se seleccionó literatura inglesa relacionada con estudios que informan sobre las propiedades de CoCrMo y los procesos de fabricación y los hallazgos relacionados con las técnicas de formación de huesos. Los datos se compararon cualitativamente. Resultados: Se seleccionaron 90 estudios según los criterios de inclusión. y se reportaron diferentes técnicas de fabricación y sus ventajas relacionadas con propiedades mecánicas, químicas y biocompatibles. Conclusión: Las reacciones tisulares mejoradas de los dispositivos de implante CoCrMo pueden adquirirse mediante la aplicación de nuevas técnicas y modificaciones de la superficie. Además, varios procesos han demostrado mejorar la biocompatibilidad in vitro e in vivo de la aleación CoCrMo para promover la unión, proliferación y diferenciación guiada de las células de siembra.

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Huy Xuan Ngo ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Shinji Ishizuka ◽  
Erina Toda ◽  
...  

The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1192
Author(s):  
Anida-Maria Băbțan ◽  
Daniela Timuș ◽  
Olga Sorițău ◽  
Bianca Adina Boșca ◽  
Reka Barabas ◽  
...  

Background: SLM (Selective Laser Melting)–manufactured Titanium (Ti) scaffolds have a significant value for bone reconstructions in the oral and maxillofacial surgery field. While their mechanical properties and biocompatibility have been analysed, there is still no adequate information regarding tissue integration. Therefore, the aim of this study is a comprehensive systematic assessment of the essential parameters (porosity, pore dimension, surface treatment, shape) required to provide the long-term performance of Ti SLM medical implants. Materials and methods: A systematic literature search was conducted via electronic databases PubMed, Medline and Cochrane, using a selection of relevant search MeSH terms. The literature review was conducted using the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Results: Within the total of 11 in vitro design studies, 9 in vivo studies, and 4 that had both in vitro and in vivo designs, the results indicated that SLM-generated Ti scaffolds presented no cytotoxicity, their tissue integration being assured by pore dimensions of 400 to 600 µm, high porosity (75–88%), hydroxyapatite or SiO2–TiO2 coating, and bioactive treatment. The shape of the scaffold did not seem to have significant importance. Conclusions: The SLM technique used to fabricate the implants offers exceptional control over the structure of the base. It is anticipated that with this technique, and a better understanding of the physical interaction between the scaffold and bone tissue, porous bases can be tailored to optimize the graft’s integrative and mechanical properties in order to obtain structures able to sustain osseous tissue on Ti.


Author(s):  
Weidong Jiang ◽  
Peiqi Zhu ◽  
Fangfang Huang ◽  
Zhenchen Zhao ◽  
Tao Zhang ◽  
...  

Distraction osteogenesis (DO) is used to treat large bone defects in the field of oral and maxillofacial surgery. Successful DO-mediated bone regeneration is dependent upon angiogenesis, and endothelial progenitor cells (EPCs) are key mediators of angiogenic processes. The N6-methyladenosine (m6A) methyltransferase has been identified as an important regulator of diverse biological processes, but its role in EPC-mediated angiogenesis during DO remains to be clarified. In the present study, we found that the level of m6A modification was significantly elevated during the process of DO and that it was also increased in the context of EPC angiogenesis under hypoxic conditions, which was characterized by increased METTL3 levels. After knocking down METTL3 in EPCs, m6A RNA methylation, proliferation, tube formation, migration, and chicken embryo chorioallantoic membrane (CAM) angiogenic activity were inhibited, whereas the opposite was observed upon the overexpression of METTL3. Mechanistically, METTL3 silencing reduced the levels of VEGF and PI3Kp110 as well as the phosphorylation of AKT, whereas METTL3 overexpression reduced these levels. SC79-mediated AKT phosphorylation was also able to restore the angiogenic capabilities of METTL3-deficient EPCs in vitro and ex vivo. In vivo, METTL3-overexpressing EPCs were additionally transplanted into the DO callus, significantly enhancing bone regeneration as evidenced by improved radiological and histological manifestations in a canine mandibular DO model after consolidation over a 4-week period. Overall, these results indicate that METTL3 accelerates bone regeneration during DO by enhancing EPC angiogenesis via the PI3K/AKT pathway.


Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 94 ◽  
Author(s):  
Denise Murgia ◽  
Rodolfo Mauceri ◽  
Giuseppina Campisi ◽  
Viviana De Caro

The natural polyphenol Resveratrol (RSV) claims numerous positive effects on health due to the well documented biological effects demonstrating its potential as a disease-preventing agent and as adjuvant for treatment of a wide variety of chronic diseases. Since several studies, both in vitro and in vivo, have highlighted the protective bone aptitude of RSV both as promoter of osteoblasts’ proliferation and antagonist of osteoclasts’ differentiation, they could be interesting in view of applications in the field of dentistry and maxillofacial surgery. This review has brought together experimental findings on the use of RSV in the regeneration of bone tissue comprising also its application associated with scaffolds and non-transfusional hemocomponents.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 517
Author(s):  
Nurul Aida Ngah ◽  
Jithendra Ratnayake ◽  
Paul R. Cooper ◽  
George J. Dias ◽  
Darryl C. Tong ◽  
...  

Objective: The use of platelet concentrates (PCs) in oral and maxillofacial surgery, periodontology, and craniofacial surgery has been reported. While PCs provide a rich reservoir of autologous bioactive growth factors for tissue regeneration, their drawbacks include lack of utility for long-term application, low elastic modulus and strength, and limited storage capability. These issues restrict their broader application. This review focuses on the lyophilization of PCs (LPCs) and how this processing approach affects their biological and mechanical properties for application as a bioactive scaffold for craniofacial tissue regeneration. Materials and Methods: A comprehensive search of five electronic databases, including Medline, PubMed, EMBASE, Web of Science, and Scopus, was conducted from 1946 until 2019 using a combination of search terms relating to this topic. Results: Ten manuscripts were identified as being relevant. The use of LPCs was mostly studied in in vitro and in vivo craniofacial bone regeneration models. Notably, one clinical study reported the utility of LPCs for guided bone regeneration prior to dental implant placement. Conclusions: Lyophilization can enhance the inherent characteristics of PCs and extends shelf-life, enable their use in emergency surgery, and improve storage and transportation capabilities. In light of this, further preclinical studies and clinical trials are required, as LPCs offer a potential approach for clinical application in craniofacial tissue regeneration.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Benson Koh ◽  
Nadiah Sulaiman ◽  
Sharifah Nursyazwani Shahirah Wan Ismadi ◽  
Roszalina Ramli ◽  
Siti Salmiah Mohd Yunus ◽  
...  

Abstract Background In the area of oral and maxillofacial surgery, regenerative endodontics aims to present alternative options to conventional treatment strategies. With continuous advances in regenerative medicine, the source of cells used for pulp tissue regeneration is not only limited to mesenchymal stem cells as the non-mesenchymal stem cells have shown capabilities too. In this review, we are systematically assessing the recent findings on odontoblastic differentiation induction with scaffold and non-scaffold approaches. Methods A comprehensive search was conducted in Pubmed, and Scopus, and relevant studies published between 2015 and 2020 were selected following the PRISMA guideline. The main inclusion criteria were that articles must be revolving on method for osteoblast differentiation in vitro study. Therefore, in vivo and human or animal clinical studies were excluded. The search outcomes identified all articles containing the word “odontoblast”, “differentiation”, and “mesenchymal stem cell”. Results The literature search identified 99 related studies, but only 11 articles met the inclusion criteria. These include 5 odontoblastic differentiation induction with scaffold, 6 inductions without scaffolds. The data collected were characterised into two main categories: type of cells undergo odontoblastic differentiation, and odontoblastic differentiation techniques using scaffolds or non-scaffold. Conclusion Based on the data analysis, the scaffold-based odontoblastic induction method seems to be a better option compared to the non-scaffold method. In addition of that, the combination of growth factors in scaffold-based methods could possibly enhance the differentiation. Thus, further detailed studies are still required to understand the mechanism and the way to enhance odontoblastic differentiation.


2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


2018 ◽  
Vol 9 (4) ◽  
pp. 62 ◽  
Author(s):  
Gianluca Turco ◽  
Davide Porrelli ◽  
Eleonora Marsich ◽  
Federica Vecchies ◽  
Teresa Lombardi ◽  
...  

Background: Bone substitutes, either from human (autografts and allografts) or animal (xenografts) sources, suffer from inherent drawbacks including limited availability or potential infectivity to name a few. In the last decade, synthetic biomaterials have emerged as a valid alternative for biomedical applications in the field of orthopedic and maxillofacial surgery. In particular, phosphate-based bone substitution materials have exhibited a high biocompatibility due to their chemical similitude with natural hydroxyapatite. Besides the nature of the biomaterial, its porous and interconnected architecture is essential for a correct osseointegration. This performance could be predicted with an extensive characterization of the biomaterial in vitro. Methods: In this study, we compared the biological, chemical, and structural features of four different commercially available bone substitutes derived from an animal or a synthetic source. To this end, µ-CT and SEM were used to describe the biomaterials structure. Both FTIR and EDS analyses were carried out to provide a chemical characterization. The results obtained by these techniques were correlated with cell adhesion and proliferation of the osteosarcoma MG-63 human cell line cultured in vitro. Results: The findings reported in this paper indicate a significant influence of both the nature and the structure of the biomaterials in cell adhesion and proliferation, which ultimately could affect the clinical performance of the biomaterials. Conclusions: The four commercially available bone substitutes investigated in this work significantly differed in terms of structural features, which ultimately influenced in vitro cell proliferation and may so affect the clinical performance of the biomaterials.


2021 ◽  
Author(s):  
Jungtae Leem ◽  
Yohwan Kim ◽  
Kwan-Il Kim

Abstract Background: Particulate matter (PM) is an important environmental risk factor in the initiation and exacerbation of respiratory disease. Various herbal medicines have exhibited a reduction in symptoms of respiratory diseases induced by PM in animal models; however, their efficacy, mechanism, and safety have not been reviewed. This review will evaluate the efficacy, safety, and mechanism of action of herbal medicines in respiratory diseases caused by PM. Methods:We will follow the scoping review framework developed by Arksey and O’Malley. MEDLINE (via PubMed), EMBASE, and the Cochrane Central Register of Controlled Trials will be searched for relevant English-language publications, and only peer-reviewed, controlled comparative in-vivo/in-vitro studies examining the effects of herbs in animal models of respiratory disease induced by PM will be included. The basic characteristics, research method, possible mechanism, and results will be extracted. The primary outcome will be pulmonary function; secondary outcomes will be inflammatory markers, reactive oxygen species, histology and mechanisms, and adverse events. Two researchers will independently perform the study selection, data extraction, and quality assessment. RevMan software (version 5.3) will be used for the quantitative data synthesis. When appropriate, data will be pooled for meta-analysis using fixed or random effects models; otherwise, evidence will be summarized qualitatively. Ethics and Dissemination: Ethical approval is not required because individual patient data will not be included. The findings will be disseminated through peer-reviewed publications or conference presentations.Registration number: This review protocol has been registered with the Open Science Framework on February 12, 2021 (https://osf.io/s7uvk/)


1994 ◽  
Vol 17 (3) ◽  
pp. 155-162 ◽  
Author(s):  
G.J. Verkerke ◽  
H. Schraffordt Koops ◽  
R.P.H. Veth ◽  
H.J. Grootenboer ◽  
L.J. De Boer ◽  
...  

A malignant bone tumour may develop in the femur of a child. In the majority of cases it will be necessary to resect the bone involved, growth plate and adjacent tissues. A modular endoprosthetic system has been developed which can be extended non-invasively to bridge the defect resulting from such a resection. Elongation is achieved by using an external magnetic field. In vitro tests with a prototype showed that the lengthening element met all requirements. Six animal experiments showed that the lengthening element also functioned in vivo.


Sign in / Sign up

Export Citation Format

Share Document