Reactive changes of gastric mucosa and reduction of desacyl grelin in rat brain due to psychoemotional stress

2021 ◽  
Vol 19 (2) ◽  
pp. 203-210
Author(s):  
Vladislava A. Raptanova ◽  
Andrei V. Droblenkov ◽  
Andrei A. Lebedev ◽  
Pavel S. Bobkov ◽  
Platon P. Khokhlov ◽  
...  

BACKGROUND: The work is devoted to the analysis of the elements the reactivity of grelin system in the model of psychogenic stress. In recent years, it has been shown that the ghrelin brain system is not limited only to the regulation of energy balance and eating behavior. Along with other peptide regulatory systems, it plays an important role in the mechanisms of stress, reward and addiction. Therefore, the elements of this system should be considered primarily as molecular targets of pharmacological action in order to correct the states of addiction and post-stress disorders. MATERIALS AND METHODS: To produce psychoemotional stress, we used an acute single traumatic situation in male Wistar rats. The animals were placed in the tiger python, one animal died as a result of its nutritional needs, the rest of the rats experienced the death of a partner. One week after exposure to python, the animals were decapitated, and the brain structures were isolated. Aliquots of the brain structures suspensions were examined for the content of desacyl ghrelin (DAG) using a highly sensitive enzyme-linked immunosorbent assay (ELISA). In another group, rats were decapitated on the 4th day after exposure to python, stomachs were removed, which were fixed in 10% formalin solution. In horizontal paraffin sections of the gastric mucosa, after staining with hematoxylin and eosin, the heights of superficial and dimple mucous cells, the height of the dimple stroma, the area of superficial, dimple mucocytes and stroma of the dimples, and the number of dead mucocytes were calculated. To clarify the differentiation of epithelial cells, they were stained with alcian blue RESULTS: DAG was detected in all studied brain structures: amygdala, hippocampus, and hypothalamus. The highest concentration of DAG was noted in the hypothalamus (p 0.05), which may serve as an indirect confirmation of the data on the presence of ghrelin-containing neurons in the nuclei of the hypothalamus. After exposure to stress, a sharp decrease in the level of DAG was observed in all studied brain structures (812 times, p 0.01): amygdala, hippocampus, and hypothalamus. It has been established that the experience of the stress of the death of a partner is expressed by erosive inflammation of the gastric mucosa, the death of many mucous cells, and an increase in mucus production in viable epithelial cells. CONCLUSION: Psychoemotional stress completely suppresses the content of desacyl ghrelin of the brain in rats, which may be based on both a disturbance of the central mechanisms of limbic regulation and a violation of peripheral mechanisms, in particular, reactive changes in the gastric mucosa.

2021 ◽  
Vol 7 (1) ◽  
pp. 41-46
Author(s):  
Petr D. Shabanov ◽  
Aleksandra A. Blazhenko ◽  
Aleksandr S. Devyashin ◽  
Platon P. Khokhlov ◽  
Andrei A. Lebedev

The aim: of the study was to investigate the level of ghrelin in various brain structures during a stress response in Zebrafish to a predator, to evaluate this indicator as a potential biomarker of stress, and the effect of a benzodiazepine tranquilizer (phenazepam) on stress-induced changes Materials and methods: The object of the study was Zebrafish, or Danio rerio wild type, which was subjected to stress by exposure to a predator Hypsophrys nicaraguensis from the cichlid family. In the tail tissue, the level of cortisol was determined, in the brain – the level of total (acylated and non-acylated) ghrelin by the method of enzyme-linked immunosorbent assay. The benzodiazepine anxiolytic phenazepam (1 mg/L), a ghrelin antagonist [D-Lys3]-GHRP-6 (0.333 mg/l) and corticotropin-releasing hormone (CRF; 0.4 mg/L) were used as the pharmacological agents. Results and discussion: Exposure to a predator, just as administering CRF, more than doubled the level of cortisol in the tail tissue. [D-Lys3]-GHRP-6 and phenazepam prevented an increase in a tissue cortisol level. Simultaneously, in the medulla oblongata and cerebellum, the phylogenetically most ancient structures, rather than in the forebrain (telencephalon) or in the midbrain (corpora bigemia), the level of ghrelin was recorded about 500 pg/g of total protein. In response to exposure to a predator, the level of ghrelin increased in the forebrain and midbrain to nanogram concentrations and moderately decreased in the cerebellum. The effect was prevented by phenazepam and [D-Lys3]-GHRP-6. Conclusion: Increases in ghrelin in the brain in response to stressful situations can be seen as a functional brain biomarker of stress, along with increased levels of tissue cortisol levels. Both of these effects are prevented by both the ghrelin antagonist and the benzodiazepine tranquilizer. The mechanism of action of the tranquilizer is a functional antagonism between the GABAergic system of the brain and the ghrelin system.


2017 ◽  
Vol 15 (3) ◽  
pp. 22-27
Author(s):  
Platon P. Khokhlov ◽  
Sergey G. Tsikunov ◽  
Ilia Yu. Tissen ◽  
Andrei A. Lebedev ◽  
Eugenii R. Bychkov ◽  
...  

Background. During last years it has been shown the ghrelin signaling system not only regulates energy balance and food intake. It also takes part in reinforcement mechanisms and addiction formation. So the ghrelin system may be considered as possible molecular target to study addiction treatment and post-stressor pharmacological modulation. The aim of this work was to study the effects of ghrelin agonist and antagonist administration on des-acyl ghrelin (DAG) content in the brain structures under stress exposure in Wistar rats. Methods. The acute psychoemotional stress was realized by means of exposure of experimental rats to predator, a tiger python. Ghrelin or ghrelin antagonist D-Lys3-GHRP-6 (Tocris, UK) 10 µg in 20 µl administered intranasally for 7 days after stress exposure. Then brain structures were obtained, homogenized with cryogenic system “Cryomill 200” (Retsch, Germany) and investigated with high-sensitive ELISA (SP-BIO, France). Results. DAG have been detected in every brain structures studied. That are amygdala, hippocampus and hypothalamus. In control group of animals the DAG concentration in hypothalamus was 3-fold more comparning to hippocampus and 2-fold more conparning to amygdala content. The acute stress have dramatically 8-12-fold decrease of DAG concentrations in every brain structures studied. The pharmacological actions on GHSR receptor by ghrelin agonist and antagonist have not affect significant changes in DAG concentrations in every brain structures. Conclusions. The different concentrations of DAG in brain structures in control gtoup supports the view about ghrelin releasing neurons in the hypothalamus. Intranasal administration of ghrelin agonist and antagonist changes the levels of DAG in the hippocampus and the hypothalamus but not in the amygdala nucleus. Our data confirm the opinion about ghrelin-releasing neurons in hypothalamus. The experiments showed the acute stress had caused great depression of ghrelin system in various brain structures. The response of ghrelin system to acute stress occur possibly besides GHSR receptor pathway. The last have been suggested by absence of significant response to ghrelin agonist and antagonist administration.


2020 ◽  
Vol 11 (4) ◽  
pp. 546-551
Author(s):  
A. M. Titkova ◽  
O. G. Berchenko ◽  
O. V. Veselovska ◽  
A. V. Shliakhova

The role of steroid hormones in regulation of the functions of the emotiogenic limbic-neocortical system has been actively studied over the recent decades in order to determine their synthesis in the brain structures and role in the development and maintenance of dependence on psychoactive substances. However, the wide range of neurosteroids and their metabolites, as well as structural specific features of the synthesis of both neurohormones and their receptors make it difficult to obtain experimental data and interpret the results of the study. The participation of progesterone, cortisol, testosterone and estradiol in the development of alcohol dependence and the changes in their concentrations in the hypothalamus, hippocampus, amygdala and serum under the influence of dosed physical load were studied in 48 outbred adult male rats. Alcohol dependence was modeled by means of consuming food containing alcohol in the dose of 1.25 g of ethanol per 1 kg of rat body weight for two months. Dosed physical load was reproduced by a rat running in a wheel for 30 minutes daily for 7–10 days against the background of alcohol withdrawal. Neuroethological testing of craving for alcohol, EEG recording of the neocortex, hippocampus and amygdala was performed using a computer-diagnostic complex. The concentration of steroid hormones was determined in the structures of the brain and blood serum by the enzyme-linked immunosorbent assay. It was shown that dosed physical load attenuated the alcohol motivation of rats. On the 5th day it suppressed the electrographic manifestations of paroxysmal activity in the hippocampus and increased the level of the theta-rhythm in the amygdala, and on the 7th day it activated the neocortex with increasing beta-rhythm. This effect was accompanied by an increase in serum testosterone level against the background of maintaining functional tension of the peripheral glucocorticoid link of the hypothalamus-pituitary-adrenal system, which was observed in a state of alcohol dependence. The study demonstrated that progesterone plays the key role in allostatic rearrangements of the functional state of animals. An imbalance of progesterone levels was revealed in the brain structures: an increase – in the hypothalamus and hippocampus, and a decrease – in the amygdala under alcohol dependence; a decrease – in the hippocampus with recovery in the amygdala against the background of its high level in the hypothalamus, which occurs under the influence of dosed physical load on the rats under alcohol withdrawal. Thus, the dosed physical load is a promising approach to alcohol dependence rehabilitation.


2019 ◽  
Vol 19 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Zhi-You Cai ◽  
Chuan-Ling Wang ◽  
Tao-Tao Lu ◽  
Wen-Ming Yang

Background:Liver kinase B1 (LKB1)/5’-adenosine monophosphate-activated protein kinase (AMPK) signaling, a metabolic checkpoint, plays a neuro-protective role in the pathogenesis of Alzheimer’s disease (AD). Amyloid-β (Aβ) acts as a classical biomarker of AD. The aim of the present study was to explore whether berberine (BBR) activates LKB1/AMPK signaling and ameliorates Aβ pathology.Methods:The Aβ levels were detected using enzyme-linked immunosorbent assay and immunohistochemistry. The following biomarkers were measured by Western blotting: phosphorylated (p-) LKB1 (Ser334 and Thr189), p-AMPK (AMPKα and AMPKβ1), synaptophysin, post-synaptic density protein 95 and p-cAMP-response element binding protein (p-CREB). The glial fibrillary acidic protein (GFAP) was determined using Western blotting and immunohistochemistry.Results:BBR inhibited Aβ expression in the brain of APP/PS1 mice. There was a strong up-regulation of both p-LKB1 (Ser334 and Thr189) and p-AMPK (AMPKα and AMPKβ1) in the brains of APP/PS1 transgenic mice after BBR-treatment (P<0.01). BBR promoted the expression of synaptophysin, post-synaptic density protein 95 and p-CREB(Ser133) in the AD brain, compared with the model mice.Conclusion:BBR alleviates Aβ pathogenesis and rescues synapse damage via activating LKB1/AMPK signaling in the brain of APP/PS1 transgenic mice.


2019 ◽  
Vol 19 (3) ◽  
pp. 316-325
Author(s):  
Mahdi Goudarzvand ◽  
Yaser Panahi ◽  
Reza Yazdani ◽  
Hosein Miladi ◽  
Saeed Tahmasebi ◽  
...  

Objective: Experimental autoimmune encephalomyelitis (EAE) is a widely used model for multiple sclerosis. The present study has been designed to compare the efficiencies of oral and intraperitoneal (IP) administration of D-aspartate (D-Asp) on the onset and severity of EAE, the production of neurosteroids, and the expression of neurosteroid receptors and inflammatory mediators in the brain of EAE mice. Methods: In this study, EAE was induced in C57BL/6 mice treated with D-Asp orally (D-Asp-Oral) or by IP injection (D-Asp-IP). On the 20th day, brains (cerebrums) and cerebellums of mice were evaluated by histological analyses. The brains of mice were analyzed for: 1) Neurosteroid (Progesterone, Testosterone, 17β-estradiol) concentrations; 2) gene expressions of cytokines and neurosteroid receptors by reverse transcription polymerase chain reaction, and 3) quantitative determination of D-Asp using liquid chromatography-tandem mass spectrometry. Further, some inflammatory cytokines and matrix metalloproteinase-2 (MMP-2) were identified in the mouse serum using enzyme-linked immunosorbent assay kits. Results: Our findings demonstrated that after D-Asp was administered, it was taken up and accumulated within the brain. Further, IP injection of D-Asp had more beneficial effects on EAE severity than oral gavage. The concentration of the testosterone and 17β-estradiol in D-Asp-IP group was significantly higher than that of the control group. There were no significant differences in the gene expression of cytokine and neurosteroid receptors between control, D-Asp-IP, and D-Asp-Oral groups. However, IP treatment with D-Asp significantly reduced C-C motif chemokine ligand 2 and MMP-2 serum levels compared to control mice. Conclusion: IP injection of D-Asp had more beneficial effects on EAE severity, neurosteroid induction and reduction of inflammatory mediators than oral gavage.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 621
Author(s):  
Ernest Adeghate ◽  
Crystal M. D’Souza ◽  
Zulqarnain Saeed ◽  
Saeeda Al Jaberi ◽  
Saeed Tariq ◽  
...  

Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC), and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal (PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus. The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney. Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain. NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED expression in the kidney, liver and brain of diabetic rats.


2021 ◽  
Vol 22 (11) ◽  
pp. 6071
Author(s):  
Suzanne Gascon ◽  
Jessica Jann ◽  
Chloé Langlois-Blais ◽  
Mélanie Plourde ◽  
Christine Lavoie ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Ángel Romero-Martínez ◽  
Macarena González ◽  
Marisol Lila ◽  
Enrique Gracia ◽  
Luis Martí-Bonmatí ◽  
...  

Introduction: There is growing scientific interest in understanding the biological mechanisms affecting and/or underlying violent behaviors in order to develop effective treatment and prevention programs. In recent years, neuroscientific research has tried to demonstrate whether the intrinsic activity within the brain at rest in the absence of any external stimulation (resting-state functional connectivity; RSFC) could be employed as a reliable marker for several cognitive abilities and personality traits that are important in behavior regulation, particularly, proneness to violence. Aims: This review aims to highlight the association between the RSFC among specific brain structures and the predisposition to experiencing anger and/or responding to stressful and distressing situations with anger in several populations. Methods: The scientific literature was reviewed following the PRISMA quality criteria for reviews, using the following digital databases: PubMed, PsycINFO, Psicodoc, and Dialnet. Results: The identification of 181 abstracts and retrieval of 34 full texts led to the inclusion of 17 papers. The results described in our study offer a better understanding of the brain networks that might explain the tendency to experience anger. The majority of the studies highlighted that diminished RSFC between the prefrontal cortex and the amygdala might make people prone to reactive violence, but that it is also necessary to contemplate additional cortical (i.e. insula, gyrus [angular, supramarginal, temporal, fusiform, superior, and middle frontal], anterior and posterior cingulated cortex) and subcortical brain structures (i.e. hippocampus, cerebellum, ventral striatum, and nucleus centralis superior) in order to explain a phenomenon as complex as violence. Moreover, we also described the neural pathways that might underlie proactive violence and feelings of revenge, highlighting the RSFC between the OFC, ventral striatal, angular gyrus, mid-occipital cortex, and cerebellum. Conclusions. The results from this synthesis and critical analysis of RSFC findings in several populations offer guidelines for future research and for developing a more accurate model of proneness to violence, in order to create effective treatment and prevention programs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Xie ◽  
Long Fan ◽  
Liya Xiong ◽  
Peiyu Chen ◽  
Hongli Wang ◽  
...  

Abstract Background Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis. Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H. pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro. Methods The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH, IL-1β and IL-18. Results In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1β and IL-18 mature and secretion, which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with H. pylori infection. Conclusion These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 823
Author(s):  
Ekaterina A. Rudnitskaya ◽  
Tatiana A. Kozlova ◽  
Alena O. Burnyasheva ◽  
Natalia A. Stefanova ◽  
Nataliya G. Kolosova

Sporadic Alzheimer’s disease (AD) is a severe disorder of unknown etiology with no definite time frame of onset. Recent studies suggest that middle age is a critical period for the relevant pathological processes of AD. Nonetheless, sufficient data have accumulated supporting the hypothesis of “neurodevelopmental origin of neurodegenerative disorders”: prerequisites for neurodegeneration may occur during early brain development. Therefore, we investigated the development of the most AD-affected brain structures (hippocampus and prefrontal cortex) using an immunohistochemical approach in senescence-accelerated OXYS rats, which are considered a suitable model of the most common—sporadic—type of AD. We noticed an additional peak of neurogenesis, which coincides in time with the peak of apoptosis in the hippocampus of OXYS rats on postnatal day three. Besides, we showed signs of delayed migration of neurons to the prefrontal cortex as well as disturbances in astrocytic and microglial support of the hippocampus and prefrontal cortex during the first postnatal week. Altogether, our results point to dysmaturation during early development of the brain—especially insufficient glial support—as a possible “first hit” leading to neurodegenerative processes and AD pathology manifestation later in life.


Sign in / Sign up

Export Citation Format

Share Document