scholarly journals Antibody-based antiangiogenic and antilymphangiogenic therapies to prevent tumor growth and progression.

2013 ◽  
Vol 60 (3) ◽  
Author(s):  
Monika Bzowska ◽  
Renata Mężyk-Kopeć ◽  
Tomasz Próchnicki ◽  
Małgorzata Kulesza ◽  
Tomasz Klaus ◽  
...  

Blood and lymphatic vessel formation is an indispensable factor for cancer progression and metastasis. Therefore, various strategies designed to block angiogenesis and lymphangiogenesis are being investigated in the hope to arrest and reverse tumor development. Monoclonal antibodies, owing to their unequalled diversity and specificity, might be applied to selectively inhibit the pathways that cancer cells utilize to build up a network of blood vessels and lymphatics. Among the possible targets of antibody-based therapies are proangiogenic and prolymphangiogenic growth factors from the VEGF family and the receptors to which they bind (VEGFRs). Here, we present molecular mechanisms of angiogenesis and lymphangiogenesis exploited by tumors to progress and metastasise, with examples of antibody-based therapeutic agents directed at interfering with these processes. The expanding knowledge of vascular biology helps to explain some of the problems encountered in such therapies, that arise due to the redundancy in signaling networks controlling the formation of blood and lymphatic vessels, and lead to tumor drug resistance. Nonetheless, combined treatments and treatments focused on newly discovered proangiogenic and prolymphangiogenic factors give hope that more prominent therapeutic effects might be achieved in the future.

Author(s):  
Jinlong Liu ◽  
Yuchen Wang ◽  
Zhidong Qiu ◽  
Guangfu Lv ◽  
Xiaowei Huang ◽  
...  

The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.


2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Kenzui Taniue ◽  
Nobuyoshi Akimitsu

Fusion RNAs are a hallmark of some cancers. They result either from chromosomal rearrangements or from splicing mechanisms that are non-chromosomal rearrangements. Chromosomal rearrangements that result in gene fusions are particularly prevalent in sarcomas and hematopoietic malignancies; they are also common in solid tumors. The splicing process can also give rise to more complex RNA patterns in cells. Gene fusions frequently affect tyrosine kinases, chromatin regulators, or transcription factors, and can cause constitutive activation, enhancement of downstream signaling, and tumor development, as major drivers of oncogenesis. In addition, some fusion RNAs have been shown to function as noncoding RNAs and to affect cancer progression. Fusion genes and RNAs will therefore become increasingly important as diagnostic and therapeutic targets for cancer development. Here, we discuss the function, biogenesis, detection, clinical relevance, and therapeutic implications of oncogenic fusion genes and RNAs in cancer development. Further understanding the molecular mechanisms that regulate how fusion RNAs form in cancers is critical to the development of therapeutic strategies against tumorigenesis.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 965
Author(s):  
Sixuan Li ◽  
Hongquan Zhang ◽  
Xiaofan Wei

Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun-ping Hu ◽  
Yun-peng Jin ◽  
Xiang-song Wu ◽  
Yang Yang ◽  
Yong-sheng Li ◽  
...  

Abstract Backgrounds Long non-coding RNAs (lncRNAs) are essential factors that regulate tumor development and metastasis via diverse molecular mechanisms in a broad type of cancers. However, the pathological roles of lncRNAs in gallbladder carcinoma (GBC) remain largely unknown. Here we discovered a novel lncRNA termed lncRNA Highly expressed in GBC (lncRNA-HGBC) which was upregulated in GBC tissue and aimed to investigate its role and regulatory mechanism in the development and progression of GBC. Methods The expression level of lncRNA-HGBC in GBC tissue and different cell lines was determined by quantitative real-time PCR. The full length of lncRNA-HGBC was obtained by 5′ and 3′ rapid amplification of the cDNA ends (RACE). Cellular localization of lncRNA-HGBC was detected by fluorescence in situ hybridization (FISH) assays and subcellular fractionation assay. In vitro and in vivo assays were preformed to explore the biological effects of lncRNA-HGBC in GBC cells. RNA pull-down assay, mass spectrometry, and RNA immunoprecipitation (RIP) assay were used to identify lncRNA-HGBC-interacting proteins. Dual luciferase reporter assays, AGO2-RIP, and MS2-RIP assays were performed to verify the interaction between lncRNA-HGBC and miR-502-3p. Results We found that lncRNA-HGBC was upregulated in GBC and its upregulation could predict poor survival. Overexpression or knockdown of lncRNA-HGBC in GBC cell lines resulted in increased or decreased, respectively, cell proliferation and invasion in vitro and in xenografted tumors. LncRNA-HGBC specifically bound to RNA binding protein Hu Antigen R (HuR) that in turn stabilized lncRNA-HGBC. LncRNA-HGBC functioned as a competitive endogenous RNA to bind to miR-502-3p that inhibits target gene SET. Overexpression, knockdown or mutation of lncRNA-HGBC altered the inhibitory effects of miR-502-3p on SET expression and downstream activation of AKT. Clinically, lncRNA-HGBC expression was negatively correlated with miR-502-3p, but positively correlated with SET and HuR in GBC tissue. Conclusions Our study demonstrates that lncRNA-HGBC promotes GBC metastasis via activation of the miR-502-3p-SET-AKT cascade, pointing to lncRNA-HGBC as a new prognostic predictor and a therapeutic target.


2019 ◽  
Vol 20 (20) ◽  
pp. 4986 ◽  
Author(s):  
Yu-Chin Liu ◽  
Chau-Ting Yeh ◽  
Kwang-Huei Lin

Several physiological processes, including cellular growth, embryonic development, differentiation, metabolism and proliferation, are modulated by genomic and nongenomic actions of thyroid hormones (TH). Several intracellular and extracellular candidate proteins are regulated by THs. 3,3,5-Triiodo-L-thyronine (T3) can interact with nuclear thyroid hormone receptors (TR) to modulate transcriptional activities via thyroid hormone response elements (TRE) in the regulatory regions of target genes or bind receptor molecules showing no structural homology to TRs, such as the cell surface receptor site on integrin αvβ3. Additionally, L-thyroxine (T4) binding to integrin αvβ3 is reported to induce gene expression through initiating non-genomic actions, further influencing angiogenesis and cell proliferation. Notably, thyroid hormones not only regulate the physiological processes of normal cells but also stimulate cancer cell proliferation via dysregulation of molecular and signaling pathways. Clinical hypothyroidism is associated with delayed cancer growth. Conversely, hyperthyroidism is correlated with cancer prevalence in various tumor types, including breast, thyroid, lung, brain, liver and colorectal cancer. In specific types of cancer, both nuclear thyroid hormone receptor isoforms and those on the extracellular domain of integrin αvβ3 are high risk factors and considered potential therapeutic targets. In addition, thyroid hormone analogs showing substantial thyromimetic activity, including triiodothyroacetic acid (Triac), an acetic acid metabolite of T3, and tetraiodothyroacetic acid (Tetrac), a derivative of T4, have been shown to reduce risk of cancer progression, enhance therapeutic effects and suppress cancer recurrence. Here, we have reviewed recent studies focusing on the roles of THs and TRs in five cancer types and further discussed the potential therapeutic applications and underlying molecular mechanisms of THs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zeyaul Islam ◽  
Ameena Mohamed Ali ◽  
Adviti Naik ◽  
Mohamed Eldaw ◽  
Julie Decock ◽  
...  

Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs’ potential as biomarkers for predicting and monitoring treatment responses.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


Sign in / Sign up

Export Citation Format

Share Document