scholarly journals Antibiotic Resistance and Biofilm Production in Catalase-Positive Gram-Positive Cocci Isolated from Brazilian Pasteurized Milk

Author(s):  
M.A.A. Machado ◽  
W.A. Ribeiro ◽  
V.S. Toledo ◽  
G.L.P.A. Ramos ◽  
H.C. Vigoder ◽  
...  

Background: Milk is a reservoir for several groups of microorganisms, which may pose health risks. The aim of this work was to assess the antibiotic resistance and biofilm production in catalase-positive Gram-positive cocci isolated from Brazilian pasteurized milk. Methods: The bacteria were isolated using Baird-Parker agar and identified by MatrixAssisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometer. Disk diffusion technique was used to evaluate antimicrobial susceptibility. For qualitative evaluation of biofilm production, the growth technique was used on Congo Red Agar. Results: Totally, 33 out of 64 isolates were identified, including Staphylococcus epidermidis (n=3; 4.7%), Macrococcus caseolyticus (n=14; 21.9%), and Kocuria varians (n=16; 25%). Twenty-two isolates were resistant to at least one antibiotic. Biofilm production was detected in only 5 isolates of K. varians and 1 isolate of S. epidermidis. All 14 M. caseolyticus isolates were resistant to at least one antibiotic; but, multidrug resistant (MDR) isolates were not detected. Among all K. varians isolates, 4 were resistant to at least one antibiotic from three different classes and were considered to be MDR. Conclusion: The presence of antibiotic-resistant M. caseolyticus, S. epidermidis, and K. varians isolates, especially MDRs, in milk samples highlights the possible role of milk as a reservoir of resistance genes

Author(s):  
M. Divyashree ◽  
Madhu K. Mani ◽  
Indrani Karunasagar

Abstract The study aimed to examine the relationship between antibiotic resistance, biofilm formation and genes responsible for biofilm formation. Sixty-six Pseudomonas aeruginosa isolates were obtained from hospital wastewater and analyzed for their antibiotic resistance. Biofilm production among the isolates was tested by quantitative method crystal violet assay. Biofilm-associated genes among these isolates psl, alg, and pel were also checked. The maximum resistance was observed for ampicillins (88.24%) followed by nalidixic (83.82%), and nitrofurantoin (64.71%), respectively. Biofilm phenotypes are distributed in the following categories: high 39.39% (n = 26); moderate 57.57% (n = 38), and weak 3.0% (n = 2). Among the total isolates, biofilm-associated genes were detected in 84.84% (n = 56) of isolates and the remaining isolates 15.15% (n = 10) did not harbor any genes. In this study, pslB was the most predominant gene observed (71.21%, n = 47) followed by pslA (57.57%, n = 38), pelA (45.45%, n = 30), algD (43.93%, n = 29), and pelD (27.27%, n = 18), respectively. The present study reveals that the majority of the isolates are multidrug resistant being moderate and high biofilm formers. The study implies that biofilm acts as a machinery for bacteria to survive in the hospital effluent which is an antibiotic stress environment.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 775
Author(s):  
Kezia Drane ◽  
Roger Huerlimann ◽  
Michelle Power ◽  
Anna Whelan ◽  
Ellen Ariel ◽  
...  

Dissemination of antibiotic resistance (AR) in marine environments is a global concern with a propensity to affect public health and many ecosystems worldwide. We evaluated the use of sea turtles as sentinel species for monitoring AR in marine environments. In this field, antibiotic-resistant bacteria have been commonly identified by using standard culture and sensitivity tests, leading to an overrepresentation of specific, culturable bacterial classes in the available literature. AR was detected against all major antibiotic classes, but the highest cumulative global frequency of resistance in all represented geographical sites was against the beta-lactam class by a two-fold difference compared to all other antibiotics. Wastewater facilities and turtle rehabilitation centres were associated with higher incidences of multidrug-resistant bacteria (MDRB) accounting for an average of 58% and 49% of resistant isolates, respectively. Furthermore, a relatively similar prevalence of MDRB was seen in all studied locations. These data suggest that anthropogenically driven selection pressures for the development of AR in sea turtles and marine environments are relatively similar worldwide. There is a need, however, to establish direct demonstrable associations between AR in sea turtles in their respective marine environments with wastewater facilities and other anthropogenic activities worldwide.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Masateru Nishiyama ◽  
Susan Praise ◽  
Keiichi Tsurumaki ◽  
Hiroaki Baba ◽  
Hajime Kanamori ◽  
...  

There is increasing attention toward factors that potentially contribute to antibiotic resistance (AR), as well as an interest in exploring the emergence and occurrence of antibiotic resistance bacteria (ARB). We monitored six ARBs that cause hospital outbreaks in wastewater influent to highlight the presence of these ARBs in the general population. We analyzed wastewater samples from a municipal wastewater treatment plant (MWWTP) and hospital wastewater (HW) for six species of ARB: Carbapenem-resistant Enterobacteria (CARBA), extended-spectrum β-lactamase producing Enterobacteria (ESBL), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). We registered a high percentage of ARBs in MWWTP samples (>66%) for all ARBs except for MDRP, indicating a high prevalence in the population. Percentages in HW samples were low (<78%), and no VRE was detected throughout the study. CARBA and ESBL were detected in all wastewater samples, whereas MDRA and MRSA had a high abundance. This result demonstrated the functionality of using raw wastewater at MWWTP to monitor the presence and extent of ARB in healthy populations. This kind of surveillance will contribute to strengthening the efforts toward reducing ARBs through the detection of ARBs to which the general population is exposed.


Author(s):  
Bhuvaneshwari Gunasekar

Objective: The multiple antibiotic resistance (MAR) indexing and finding Multidrug resistant (MDR) bacteria will help to indicate the origin from high risk of contamination where the antibiotics are often used. Hence this study was carried out to give the MAR index of non-fermenting Gram negative bacilli in a tertiary care hospital which would help our infection control team also.Methods: Drug resistance was tested by Kirby bauer’s disc diffusion method. MAR index was calculated using the formula, a/b (were a= number of antibiotics to which the organism was resistant and b= total number of antibiotics to which the organism was tested).Results: Out of 240 Gram negative non-fermenters isolated, 117 (49%) strains were greater than 0.2 of MAR index, 95(81%) was from in-patient department. 73(62%) were hospitalized for more than 3 days, 44 (38%) was from surgery department. 49(42%) was wound specimen. Out of 117 multiple antibiotic resistant isolates 99 (85%) were MDR isolates.Conclusion: 51% prevalence of isolates >0.2 MAR index shows that the source of contamination can still be brought up down by proper surveillance and management with proper usage of  surface and skin disinfectants especially in surgery ward where the MAR index has indicated more usage of antibiotics


Author(s):  
Meesha Singh ◽  
Rupsha Karmakar ◽  
Sayak Ganguli ◽  
Mahashweta Mitra Ghosh

Aims: This study aims at comparative identification of antibiotic resistance patterns in bacteria isolated from samples collected from rural environment (LS) and urban environments (SS). Metagenomic profiling gave us insights into the microbial abundance of the two samples. This study focused on culture-based methods for complete identification of antibiotic resistant isolates and estimation of comparative antibiotic resistance among the two samples. Study Design: Untreated medical waste and anthropogenic waste disposal can lead to the propagation of different antibiotic resistant strains in wastewater environments both in urban and rural set ups which provide an insight towards this study approach mentioned in the methodology segment. Place and Duration of Study: Sewer system of a medical facility located in Purulia, India was the collection site for liquid sludge. Solid sludge and associated wastewater were collected in vicinity of a large urban medical facility from central Kolkata, India. Methodology: Physico-chemical properties were analyzed followed by microbiological and biochemical characterization. The antibiotic resistance patterns were determined by Kirby-Bauer disc diffusion assay. Potent multidrug resistant isolates were identified using 16srRNA gene amplification followed by Phylogenetic profiling, using CLC Genomics workbench. Results: We observed maximum resistance in an E. coli isolate which was resistant up to 22 antibiotics. Combined data for resistance from urban and rural samples were found to exhibit 83.9% resistance to beta lactams, 85.7% to macrolides, 44.2% to fluoroquinolones, 50% to glycopeptides and cephalosporins, 35.7 % to carbapenems and sulfonamides, 28.5 % to tetracycline, and 23.8 % to aminoglycosides. Conclusion: The high prevalence of antibiotic-resistant bacteria harbouring diverse resistance traits across samples indicated towards probable horizontal gene transfer across environmental niches. This study can prove to be useful to understand and map the patterns of resistance and stringently apply the counter measures related to public health practices.


2020 ◽  
Author(s):  
Yadong Sun ◽  
Shanshan Wen ◽  
Lili Zhao ◽  
Qiqi Xia ◽  
Yue Pan ◽  
...  

Abstract Background The aim of this study was to investigate the association among biofilm formation, virulence gene expression, and antibiotic resistance in P. mirabilis isolates collected from diarrhetic animals (n = 176) in northeast China between September 2014 and October 2016. Results Approximately 92.05% of the isolates were biofilm producers, whereas 7.95% of the isolates were non-producers. The prevalence of virulence genes in biofilm producers was significantly higher than that in non-producers. Biofilm production was significantly associated with the expression of ureC , zapA , rsmA , hmpA , mrpA , atfA , and pmfA ( P < 0.05). Drug susceptibility tests revealed that approximately 76.7% of the isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR). Biofilm production was significantly associated with resistance to doxycycline, tetracycline, sulfamethoxazole, kanamycin, and cephalothin ( P < 0.05). Although the pathogenicity of the biofilm producers was stronger than that of the non-producers, the biofilm-forming ability of the isolates was not significantly associated with morbidity and mortality in mice ( P > 0.05). Conclusion Our findings suggested that a high level of multidrug resistance in diarrhetic animals infected with P. mirabilis in northeast China.The results of this study indicated that the positive rates of the genes expressed by biofilm-producing P. mirabilis isolates were significantly higher than those expressed by non-producing isolates.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1296
Author(s):  
Mar de Pablo-Miró ◽  
Sergi Pujol-Ruiz ◽  
Simona Iftimie ◽  
María del Mar Arenas-Miras ◽  
Inmaculada López-Montesinos ◽  
...  

Dalbavancin is a new antibiotic that is effective against Gram-positive microorganisms, including methicillin-resistant Staphylococci, and offers the possibility of administering intravenous therapy once weekly in an ambulatory setting. We conducted a multicenter observational case-control study, comparing all patients who received dalbavancin (cases) with hospitalized patients who were treated instead with daptomycin, linezolid or vancomycin (controls), based on clinical diagnosis, main microorganism involved, and age. The primary outcome was the length of hospital stay after starting the study antimicrobial. Secondary outcomes were 7-day and 30-day efficacy, 30-day mortality, 90-day recurrence, 90-day and 6-month hospitalization, presence of adverse events and healthcare-associated infections; 161 patients (44 cases and 117 controls) were included. Bivariate analysis showed that dalbavancin reduced the total length of hospital stay (p < 0.001), with fewer 90-day recurrences (p = 0.005), 6-month hospitalizations related to the same infection (p = 0.004) and non-related hospitalizations (p = 0.035). Multivariate analyses showed that length of hospital stay was significantly shorter in patients treated with dalbavancin (−12.05 days 95% CI [−17.00, −7.11], p < 0.001), and 30-day efficacy was higher in the dalbavancin group (OR 2.62 95% CI [1.07, 6.37], p = 0.034). Although sample size of the study may be a limitation, we can conclude that Dalbavancin is a useful antimicrobial drug against Gram-positive infections, including multidrug-resistant pathogens, and allows for a remarkable reduction in length of hospital stay with greater 30-day efficacy.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
María Dolores Alcántar-Curiel ◽  
Carmen Alejandra Ledezma-Escalante ◽  
Ma Dolores Jarillo-Quijada ◽  
Catalina Gayosso-Vázquez ◽  
Rayo Morfín-Otero ◽  
...  

Klebsiella pneumoniaeis a leading cause of multiple nosocomial infections, some of which are associated with high mortality. The increasing prevalence of antibiotic-resistant strains highlights their clinical importance and how complicated managing treatment can be. In this study, we investigated antimicrobial resistance, cell adherence, and biofilm production of nosocomialK. pneumoniaestrains isolated from surveillance studies in a Mexican tertiary hospital and evaluated the potential association of these phenotypes with endemicity. The great majority of the clones exhibited adhesion to cultured epithelial cells and were strong biofilm producers. A direct relationship between adhesion phenotypes, biofilm production, and endemicity was not always apparent. Biofilm formation and production of ESBL did not appear to be directly associated. Notably, all the endemic strains were multidrug-resistant. This study emphasizes that while endemic strains possess various virulence-associated properties, antimicrobial resistance appears to be a determining factor of their endemicity.


Sign in / Sign up

Export Citation Format

Share Document