scholarly journals Effect of Continuous and Interval Training on Amyloid β 42 (Aβ42) and Malondialdehyde (MDA) Levels in Hippocampus of Elderly Rats

Author(s):  
Zahra Barati ◽  
Ali Yaghoubi ◽  
Mohamad Reza Jalilvand

Introduction: Amyloid plaques in the brain increase with age. Thus, the present study aimed to evaluate the effect of continuous and interval training on Amyloid β 42 (Aβ42) and Malondialdehyde (MDA) levels in hippocampus of elderly rats. Methods: The present study was experimental one with two experimental groups and one control group. Thirty old male Wistar rats (18 weeks-old) divided into 3 groups, including interval training, continuous training, and control. Continuous training was performed for 8 weeks with 65 to 70% VO2max and interval training was performed for 8 weeks with 5-8 repetitions of 2 minutes of working with 80-100% VO2max and 2 minutes active rest with 50% of VO2max for 8 weeks. Hippocampal samples were extracted 48 hours after the last training session to measure protein levels of Aβ42 and MDA. One-way ANOVA and Tukey post hoc test was used for data analysis. Results: Hippocampus Aβ42 levels in continuous training groups were significantly lower than the control group (P=0.001). In addition, Aβ42 levels in hippocampus of interval training groups were significantly lower than the control group (P=0.001). However, no significant differences were found in Aβ42 levels between continuous and interval training groups (p=0.502). MDA levels in continuous training groups were significantly lower than the control group (P=0.016). In addition, MDA levels in interval training groups were significantly lower than the control group (P=0.046) But no significant differences were found in hippocampal MDA protein levels between continuous and interval training groups (p=866). Conclusion: Continuous and interval training through decreasing oxidative stress, decrease Aβ42 levels in the hippocampus of the elderly rat, thus probably continuous and interval training can prevent neurodegenerative disease caused by aging through modulating oxidative stress and Aβ42.

2018 ◽  
Vol 25 (4) ◽  
pp. 15-20 ◽  
Author(s):  
Kamil Michalik ◽  
Szymon Glinka ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract Introduction. So far there have been few studies on the effect of interval training with active recovery aimed at increasing aerobic power on the physical capacity of long-distance runners. Unlike standard interval training, this particular type of interval training does not include passive rest periods but combines high-intensity training with low-intensity recovery periods. The aims of the study were to determine the effect of aerobic power training implemented in the form of interval training with active recovery on the physical capacity of amateur long-distance runners as well as to compare their results against those of a group of runners who trained in a traditional manner and only performed continuous training. Material and methods. The study involved 12 recreational male long-distance runners, who were randomly divided into two groups, consisting of 6 persons each. Control group C performed continuous training 3 times a week (for 90 minutes, with approximately 65-85% VO2max). Experimental group E participated in one training session similar to the one implemented in group C and additionally performed interval training with active recovery twice a week. The interval training included a 20-minute warm-up and repeated running sprints of maximum intensity lasting 3 minutes (800-1,000 m). Between sprints, there was a 12-minute bout of running with an intensity of approximately 60-70% VO2max. The time of each repetition was measured, and the first one was treated as a benchmark in a given training unit. If the duration of a subsequent repetition was 5% shorter than that of the initial repetition, the subjects underwent a 15-minute cool-down period. A progressive treadmill test was carried out before and after the 7-week training period. The results were analysed using non-parametric statistical tests. Results. VO2max increased significantly both in group E (p < 0.05; d = 0.86) and C (p < 0.05; d = 0.71), and there was an improvement in effort economy at submaximal intensity. Although the differences were not significant, a much greater change in the post-exercise concentrations of lactate and H+ ions was found in group E. Conclusions. The study showed that interval training with active recovery increased VO2max in amateur runners with higher initial physical capacity and stimulated adaptation to metabolic acidosis more than continuous training.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Aghaali Ghasemnian ◽  
Mozhgan Usefpour ◽  
Ahmad Rahmani ◽  
Zeinab Iddehloei

Background: Nowadays, one of the widely used training methods is high-intensity interval training (HIIT). In addition, researchers have stated that long-term, high-intensity training is associated with the production of free radicals in the body. Free radicals also damage liver cells, resulting in increased liver enzymes. Objectives: The objective of this study was to investigate the effect of HIIT, compared to high-intensity continuous training (HICT), on damage and antioxidant indices of the liver in male Wistar rats. Methods: Twenty-two adult male rats were randomly divided into three groups of control (n = 6), HIIT (n = 8), and HICT (n = 8). Training protocols included HIIT and HICT on a treadmill for eight weeks (five days in a week). Standard water and food were provided for rats ad libitum. Forty-eight hours after the last training session, blood and tissue samples were collected, and serum enzymes were measured by the methods recommended by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) method. The level of enzyme activity of superoxide dismutase in the liver tissue was measured by Randox Commercial Kit (Cat. No. SD 126). One-way analysis of variance (ANOVA) and Tukey’s post hoc tests were used to analyze the data. Results: The results showed that eight weeks of HIIT and HICT had no effect on the alanine aminotransferase (ALT) level (P = 0.14), but eight weeks of HIIT significantly decreased the serum aspartate aminotransferase (AST) level compared to the control group (P = 0.04). The level of liver superoxide dismutase (SOD) enzyme activity significantly increased in the HIIT and HICT groups compared to the control group (P = 0.001). HICT also led to a significant increase in the SOD level compared to HIIT (P = 0.03). Conclusions: The research results suggested that eight weeks of HIIT led to a significant reduction in serum AST levels, and HIIT had a lower effect on the increased SOD activity in liver tissue compared to HICT. It might be stated that HIIT is safer than HICT, and it has fewer destructive effects on liver tissue.


2015 ◽  
Vol 16 (2) ◽  
Author(s):  
Marek Zatoń ◽  
Kamil Michalik

AbstractPurpose. The aim of this study was to investigate the influence of 8-week-long interval training (targeting glycolytic capacity) on selected markers of physical fitness in amateur long-distance runners. Methods. The study involved 17 amateur long-distance runners randomly divided into an experimental (n = 8) and control (n = 9) group. The control group performed three or four continuous training sessions per week whereas the experimental group performed two interval running training sessions and one continuous running training session. A graded treadmill exercise test and the 12-min Cooper test were performed pre- and post-training. Results. O2max and the rate of recovery increased in the experimental group. Relative oxygen uptake, minute ventilation, and heart rate speed decreased in low- (6 km/h) and medium-intensity (12 km/h) running. Conclusions. Both training modalities showed similar results. However, the significant differences in training volume (4-8 min interval training vs. 40-150 min continuous training) indicates that the modalities targeting glycolytic capacity may be more efficient for amateur runners prepare for long-distance events.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Aghaali Ghasemnian ◽  
Mozhgan Usefpour ◽  
Ahmad Rahmani ◽  
Zeinab Iddehloei

Background: Nowadays, one of the widely used training methods is high-intensity interval training (HIIT). In addition, researchers have stated that long-term, high-intensity training is associated with the production of free radicals in the body. Free radicals also damage liver cells, resulting in increased liver enzymes. Objectives: The objective of this study was to investigate the effect of HIIT, compared to high-intensity continuous training (HICT), on damage and antioxidant indices of the liver in male Wistar rats. Methods: Twenty-two adult male rats were randomly divided into three groups of control (n = 6), HIIT (n = 8), and HICT (n = 8). Training protocols included HIIT and HICT on a treadmill for eight weeks (five days in a week). Standard water and food were provided for rats ad libitum. Forty-eight hours after the last training session, blood and tissue samples were collected, and serum enzymes were measured by the methods recommended by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) method. The level of enzyme activity of superoxide dismutase in the liver tissue was measured by Randox Commercial Kit (Cat. No. SD 126). One-way analysis of variance (ANOVA) and Tukey’s post hoc tests were used to analyze the data. Results: The results showed that eight weeks of HIIT and HICT had no effect on the alanine aminotransferase (ALT) level (P = 0.14), but eight weeks of HIIT significantly decreased the serum aspartate aminotransferase (AST) level compared to the control group (P = 0.04). The level of liver superoxide dismutase (SOD) enzyme activity significantly increased in the HIIT and HICT groups compared to the control group (P = 0.001). HICT also led to a significant increase in the SOD level compared to HIIT (P = 0.03). Conclusions: The research results suggested that eight weeks of HIIT led to a significant reduction in serum AST levels, and HIIT had a lower effect on the increased SOD activity in liver tissue compared to HICT. It might be stated that HIIT is safer than HICT, and it has fewer destructive effects on liver tissue.


2020 ◽  
Vol 13 (4) ◽  
pp. 342-352 ◽  
Author(s):  
Vipin K. Verma ◽  
Salma Malik ◽  
Ekta Mutneja ◽  
Anil K. Sahu ◽  
Kumari Rupashi ◽  
...  

Background: The activation of Nrf2/HO-1 pathway has been shown to protect against cisplatin- induced nephrotoxicity by reducing oxidative stress. Berberine (Ber), an isoquinoline alkaloid, has demonstrated antioxidant, anti-inflammatory and anti-apoptotic activities in various experimental models. Aim: To check the effect of Ber on cisplatin-induced nephrotoxicity and to explore the involved mechanism. Methods: Adult male Wistar rats were divided into 6 groups: Normal, cisplatin-control, treatment groups and per se group. Normal saline and Ber (20, 40 and 80 mg/kg; p.o.) was administered to rats for 10 days. A single intraperitoneal injection of cisplatin (8 mg/kg) was injected on 7th day to induced nephrotoxicity. On 10th day, rats were sacrificed, the kidney was removed and stored for the estimation of various parameters. Results: As compared to cisplatin-control group, Ber pretreatment improved renal function system and preserved renal architecture. It also diminished oxidative stress by upregulating the expression of Nrf2/HO-1 proteins. In addition, Ber attenuated the cisplatin mediated inflammation and apoptosis. Furthermore, it also reduced the phosphorylation of p38/JNK and PARP/Beclin-1 expression in the kidney. Conclusion: Ber attenuated renal injury by activating Nrf2/HO-1 and inhibiting JNK/p38MAPKs/ PARP/Beclin-1 expression which prevented oxidative stress, inflammation, apoptosis and autophagy in renal tissue.


2005 ◽  
Vol 98 (6) ◽  
pp. 1985-1990 ◽  
Author(s):  
Kirsten A. Burgomaster ◽  
Scott C. Hughes ◽  
George J. F. Heigenhauser ◽  
Suzanne N. Bradwell ◽  
Martin J. Gibala

Parra et al. ( Acta Physiol. Scand 169: 157–165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change “anaerobic” work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (V̇o2 peak), no study has examined the effect of SIT on “aerobic” exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1–2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at ∼80% V̇o2 peak. Eight recreationally active subjects [age = 22 ± 1 yr; V̇o2 peak = 45 ± 3 ml·kg−1·min−1 (mean ± SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven “all-out” 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 ± 1.0 vs. 4.0 ± 0.7 mmol·kg protein−1·h−1) and resting muscle glycogen content increased by 26% (614 ± 39 vs. 489 ± 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 ± 11 vs. 26 ± 5 min; P < 0.05), despite no change in V̇o2 peak. The coefficient of variation for the cycle test was 12.0%, and a control group ( n = 8) showed no change in performance when tested ∼2 wk apart without SIT. We conclude that short sprint interval training (∼15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.


2018 ◽  
Vol 19 (10) ◽  
pp. 3195 ◽  
Author(s):  
Sreeja Sarasamma ◽  
Gilbert Audira ◽  
Stevhen Juniardi ◽  
Bonifasius Sampurna ◽  
Sung-Tzu Liang ◽  
...  

In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.


2012 ◽  
Vol 120 (02) ◽  
pp. 84-88 ◽  
Author(s):  
S. Chen ◽  
X. Zhuang ◽  
Y. Liu ◽  
A. Sun ◽  
C. Chen

AbstractLipin1, a lately indentified adipokine, may link obesity with insulin resistance and diabetes. The present study aimed to investigate the changes and significance of lipin1 expression and lipin1-AMPK signaling in diet-induced hepatic insulin resistance.24 4-week-old Male Wistar rats were randomly divided into 2 groups: (1) control group (CO), (2) high-fat diet group (HF). Insulin sensitivity was evaluated by hyperinsulinemic-euglycemic clamp technique. The mRNA levels of α1 and α2 subunit of AMPKα as well as Lipin1 were measured using Real-time RT-PCR. The activities of AMPKα and Akt were evaluated by detection of p-AMPKα (Thr-172) and p-Akt (ser473) by Western blot.After treatment of 4 months, HF group showed significantly increased levels of body weight, fasting plasma glucose and insulin levels; Plasma and liver total cholesterol (TC), triglycerides (TG) levels were also markedly elevated; Lipin1 expression at both mRNA and protein levels were significantly deceased. Compared with CO group, the mRNA and protein levels of AMPKα1 and AMPKα2 were not changed, whereas the p-AMPK (Thr-172) and p-AKT (ser473) levels in liver were significantly decreased in HF group.These findings indicated that the decrease in lipin1 expression and AMPKα activation may contribute to hepatic insulin resistance in diet-induced obese rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1991
Author(s):  
Janine Mett

Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.


2015 ◽  
pp. 153-159 ◽  
Author(s):  
M. M. GOVENDER ◽  
A. NADAR

Oxidative stress is an imbalance between free radicals and antioxidants, and is an important etiological factor in the development of hypertension. Recent experimental evidence suggests that subpressor doses of angiotensin II elevate oxidative stress and blood pressure. We aimed to investigate the oxidative stress related mechanism by which a subpressor dose of angiotensin II induces hypertension in a normotensive rat model. Normotensive male Wistar rats were infused with a subpressor dose of angiotensin II for 28 days. The control group was sham operated and infused with saline only. Plasma angiotensin II and H2O2 levels, whole-blood glutathione peroxidase, and AT-1a, Cu/Zn SOD, and p22phox mRNA expression in the aorta was assessed. Systolic and diastolic blood pressures were elevated in the experimental group. There was no change in angiotensin II levels, but a significant increase in AT-1a mRNA expression was found in the experimental group. mRNA expression of p22phox was increased significantly and Cu/Zn SOD decreased significantly in the experimental group. There was no significant change to the H2O2 and GPx levels. Angiotensin II manipulates the free radical-antioxidant balance in the vasculature by selectively increasing O2− production and decreasing SOD activity and causes an oxidative stress induced elevation in blood pressure in the Wistar rat.


Sign in / Sign up

Export Citation Format

Share Document