Technical regulation for the values of hydraulic parameters of used metal pipes in order to extend the period of their use

2021 ◽  
Vol 18 (3) ◽  
pp. 421-427
Author(s):  
Oleg A. PRODOUS ◽  
◽  
Lev D. TEREKHOV ◽  
Petr P. YAKUBCHIK ◽  
Alexander S. CHERNIKH ◽  
...  

Objective: To compare the characteristics of hydraulic potential in worn steel pipes with internal deposits subjected to cleaning by mechanical and chemical methods. Methods: Calculated dependencies are used for hydraulic calculation of new metal pipes and pipes with internal deposits. Results: A calculated dependence was obtained to determine the value of the inner diameter of pipes with any thickness of the layer of internal deposits. The concept of an efficient pipeline is introduced and a comparison made of the values of head losses in new pipes and in pipes with internal deposits. A specific practical example is considered. For the given example, compare the values of energy consumption of pumping equipment for two methods of cleaning the inner surface of pipes. Measures are indicated to ensure the efficiency of operation of water supply networks. Practical importance: It is shown that the chemical method of technical regulation of the hydraulic characteristics of new steel pipes provides an extension of the period of their further use.

2011 ◽  
Vol 213 ◽  
pp. 221-225 ◽  
Author(s):  
Jeong Hwan Jang ◽  
Byeong Don Joo ◽  
Sung Min Mun ◽  
Young Hoon Moon

Studies on the forming characteristics by a rotary swaging process using the sub-scale specimens have been carried out to obtain a shell body nose of desirable quality. To analyze the changes of the nose thickness and length at the respective reduction of inside diameter, the finite element simulations were carried out. As a result, the desired target dimension is satisfied with the diameter reduction of more than 64 % for the given preform. The thickness of nose area increased up to 56.1 % from initial thickness of 2.62 mm to 4.09 mm after swaging. The values of the hardness before and after swaging were 208 HV and 325 HV, respectively. To analyze the dimensional changes (length and thickness) of nose area with decreasing inside diameter, the rotary swaging test was carried out for two different diameter reductions such as 65 % and 67 %. The lengths of nose area for the diameter reductions are 11.79 mm in 65 % and 12.53 mm in 67 %, respectively. At the diameter reduction of more than 67%, the crack occurs when the localized strain hardening reduces ductility in internal area. Therefore, the nose area should be formed from 64% to 67% reduction in target inner diameter.


2014 ◽  
Vol 62 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Pavel Vlasák ◽  
Zdeněk Chára ◽  
Jan Krupička ◽  
Jiří Konfršt

Abstract The effect of solid concentration and mixture velocity on the flow behaviour, pressure drops, and concentration distribution of coarse particle-water mixtures in horizontal, vertical, and inclined smooth stainless steel pipes of inner diameter D = 100 mm was experimentally investigated. Graded basalt pebbles were used as solid particles. The study revealed that the coarse-grained particle-water mixtures in the horizontal and inclined pipes were significantly stratified. The solid particles moved principally in a layer close to the pipe invert; however for higher and moderate flow velocities, particle saltation became the dominant mode of particle conveyance. Frictional pressure drops in the horizontal pipe were found to be markedly higher than in the vertical pipe, while the frictional pressure drops in the ascending pipe increased with inclination angle up to about 30°.


Author(s):  
Ludmila Andreyeva ◽  
Yevgeniy Svintsov ◽  
Yelena Tarasevich

Objective: To describe the regulation of railroad traffic parameters in modern conditions, that lead to the necessity of putting into operation the new systems of track design, relevant for regulations in question. Methods: The method of matching, as well as the method of comparative analysis was applied in the study. Results: The advantages and disadvantages of ballastless track structure and conventional ballast track design were compared. The possibility of extensive application of ballastless track structure on modern railroads was analyzed. Practical importance: Ballastless track structure implementation will make it possible to solve practical tasks of using the given type of track design in transport construction.


Author(s):  
Alexander Shepel

Objective: To obtain technical equipment of infrastructure and terminal capacity relations in order to determine the necessary gridiron of tracks, as well as to assess efficiency and optimization of existing stations’ functioning. Methods: Based on synthesis and analysis of stations’ operation, as well as transport systems’ simulation modeling theory. Results: Parameters, influencing the present and designed terminal capacity, were identified. Cause-and-effect relations of events, resulting in railway machinery being brought in non-serviceable condition, are established. Dynamic system of indices was suggested, allowing for a more precise solution of the following tasks: to identify the necessary and sufficient gridiron of tracks for passing the specified amount of traffic, to assess the most probable amount of traffic at the station and its loading. Criteria of input and output flows of traffic at the station, as well as lay-over and trains' delays were stated, the former make it possible to analyze the suggested technical equipment and station functioning. Practical importance: On the basis of obtained relations it is possible to specify optimum relationship of trains’ lay-over time at station yards, the reserve of gridiron of tracks’ elements time in use and the number of routes being implemented at the station, as well as the necessary gridiron of tracks within the given аmount of train traffic. The results of the research may be applied in designing new railway stations, as well as optimization of station functioning and reconstruction of the existing stations.


Author(s):  
Victor Kruchek ◽  
Andrey Yevstafiyev

Objective: To obtain analytical responses of linear and angular movements of horizontal jet thrust and axial reduction unit, appearing in the process of their production and group tractive drive assembly, occurring as a result of vertical wheelset and engine’s undercarriage frame shifts during engine movement. The given responses are the basis for identifying its velocity, acceleration, and dynamic loads on drive components, as well as searching for methods to boost drive components reliability, taking into account its constructive specificities and running conditions. Methods: Analytical responses were identified on the basis of higher mathematics, the laws of theoretical mechanics as well as trigonometry knowledge application. Results: Analytical responses of kinematic spatial movements of horizontal jet thrust and an axial reduction unit with instrument accuracy of a group tractive drive were obtained from vertical engine’s undercarriage frame shifts and locomotives wheelset. Boundary conditions of jet thrust slopes were detected, as well as center lines of axial reduction units. The analysis of established relations was performed. Possible scheme variants of spatial movements of horizontal jet thrust and a wheel set axial reduction unit in engine’s undercarriage frame were presented with possible discrepancies of linear dimensions from production tolerance. Characteristic curves of vertical shifts of actual towline constructions from vertical shifts of undercarriage frame during locomotive’s movement were graphed. Practical importance: On the basis of obtained relations the analysis of linear displacement, angular velocities and accelerations of jet thrusts and wheel set axial reduction units is possible, as well as the generation of rational and robust wheel set cardan tractive gear constructions for locomotives with minimal dynamic load on its elements. The results of analytical research might be applied in the designing of new engines with high dynamic parameters.


1992 ◽  
Vol 5 (4) ◽  
pp. 339-361 ◽  
Author(s):  
Guanstian Zhu ◽  
Jingang Wu ◽  
Benzhong Liang ◽  
Xinhua Ji ◽  
Xueshi Yang

Transpiration control can avoid change of the shape of a high-speed vehicle resulting from ablation of the nose, therefore also can avoid the change of the performance of Aerodynamics. Hence it is of practical importance. A set of mathematical equations and their boundary conditions are founded and justified by an example of non-ablation calculation in reference [1]. In [2], the ablation model is studied by the method of finite differences, the applicable margin of the equations is estimated through numerical calculation, and the dynamic responses of control parameters are analyzed numerically. In this paper we prove that the solution to transpiration control problem given in [1] exists uniquely under the assumption that the given conditions (i.e. given functions) are continuous.


2012 ◽  
Vol 490-495 ◽  
pp. 3831-3835
Author(s):  
Xue Hua Li ◽  
Hui Min Liang ◽  
Zhi Kai Cao ◽  
Zhong Yun Jiang ◽  
Long Chen

The accurate count has been realized and the expected results have been acquired by the image of the end of steel pipes recognized, which has a good market prospect and economic profit. The mathematical morphology was used to preprocess image and inspect the edge of the target. An improved Hough Transformation was applied to recognize inner diameter of steel pipes, which improved the detection rate. The Hu invariant moments described in the area was used to recognize inner diameter of steel pipes, which realized the pipe sum accurately. The method to count points was used to realize the sum of pipes according to the condition that the inner diameter circus of binary pipe image was corroded more times came to change into small area.


2019 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
Zuraini Din ◽  

In the oil and gas industry, pipeline is the major transportation medium to deliver the products. According to [1] containment of pipeline loss to indicate that corrosion has been found to be the most predominant cause for failures of buried metal pipes. MIC has been identified as one of the major causes of underground pipeline corrosion failure and Sulphate Reducing Bacteria (SRB) are the main reason causing MIC, by accelerating corrosion rate. The objectives of this study is to study the SRB growth, Desulfovibrio desulfuricans ATCC 7757 due to pH and determine the optimum value controlling the bacteria growth on the internal pipe of carbon steel grade API X70. The result shows that the optimum SRB growth is at range pH 5-5 to 6.5 and the exposure time of 7 to 14 days. At pH 6.5 the maximum corrosion rate is 1.056 mm/year. Corrosion phenomena on carbon steel in the study proven had influence by pH and time. From this result pitting corrosion strongly attack at carbon steel pipe. In the future project, it is recommended to study the effect of different pipe location for example the pipeline under seawater.


2019 ◽  
pp. 575-580
Author(s):  
Dimitar Georgiev ◽  
Veselin Karasinkerov

Lately, the drip irrigation systems built with pressure compensating (PC) drippers (emitters) inside welded in the drip laterals, find more and more application in Bulgaria, Turkey, Greece and other countries having well-developed irrigation-based agriculture, especially where the ground is not flat but rather is of hilly nature. The main advantage of these systems is the provision of uniform flow rate along the laterals and batteries (blocks) in the whole drip systems irrespectively of the alteration of the operating pressure, and, besides, this allows long laterals to be designed. The recommended operating pressure starts from 0.5 – 1.0 atm and reaches 4 – 5 atm. Reaching equal drip flow rate in these systems is realized thanks to an elastic membrane with fixed strength parameters, located at the outlet of the nozzles in a specially arranged bed (nest) for this purpose. The advertisement of the applications of those nozzles in the company catalogs is very intensive but is it true for all types of pressure compensating drippers? In laboratory conditions we carried out hydraulic tests of drip laterals with inside welded pressure compensating drippers, cylinder type, in order to find out the head losses along the drip lateral. The laterals were with a nominal outer diameter 16 mm, inner diameter 13.8 mm, thickness of the wall 1.1 mm and flow rate 2.1 l/h, at intervals of 33 cm between the drippers, with lengths 60, 80 and 100 m. The results showed considerable head losses, with great deviations from the ones obtained by analytic way through formulas. For example, in a 100 m long lateral, the losses reach 60 to 75% of the applied operating pressure at the beginning of the lateral. Some specific data from the tests – in case of inlet pressure of 18, 20 and 25 m, the head losses are respectively 12, 14 and 17 m which means that in case of flat ground and such with back slope it is almost impossible to realize a length of 100 m and more of the lateral. All drippers will not operate at the horizontal part of the curve “pressure-flow rate” but at the transitional part of this curve. It follows from this that irrespectively of the pressure compensating action of those nozzles, this type of laterals will hardly find application in real conditions in the design of an engineering project for drip irrigation respecting the admissible coefficients of the distribution uniformity of the irrigation water. The same is valid for the other tested laterals as well. Sometimes, laying conventional type of laterals is more appropriate and brings better results. All this is due to the considerable minor head losses in those nozzles because of the sizable constriction of the cross section of the laterals by the nest (bed) of the membrane.


Sign in / Sign up

Export Citation Format

Share Document