Integrating Laboratory Testing and Numerical Modelling for a Giant Maturing Carbonate Field in UAE — II. Coupled Geomechanical Modelling of Stacked Reservoir Intervals

2021 ◽  
Author(s):  
Abdelwahab Noufal ◽  
Gaisoni Nasreldin ◽  
Faisal Al-Jenaibi ◽  
Joel Wesley Martin ◽  
Julian Guerra ◽  
...  

Abstract A mature field located in a gently dipping structure onshore Abu Dhabi has multiple stacked oil and gas reservoirs experiencing different levels of depletion. The average reservoir pressure in some of these intervals had declined from the early production years to the present day by more than 2000 psi. Coupled geomechanical modelling is, therefore, of the greatest value to predict the stress paths in producing reservoir units, using the concept of effective stress. This paper examines the implications for long-term field management—focusing primarily on estimating the potential for reservoir compaction and predicting field subsidence. This paper takes the work reported in Noufal et al. (2020) one step further by integrating the results of a comprehensive geomechanical laboratory characterization study designed to assess the potential geomechanical changes in the stacked reservoirs from pre-production conditions to abandonment. This paper adopts a geomechanical modelling approach integrating a wide array of data—including prestack seismic inversion outputs and dynamic reservoir simulation results. This study comprised four phases. After the completion of rock mechanics testing, the first modelling phase examined geomechanics on a fine scale around individual wells. The goal of the second phase was to build 4D mechanical earth models (4D MEMs) by incorporating 14 reservoir models—resulting in one of the largest 4D MEMs ever built worldwide. The third phase involved determining the present-day stress state—matching calibrated post-production 1D MEMs and interpreted stress features. Lastly, the resulting model was used for field management and formation stimulation applications. The 4D geomechanical modelling results indicated stress changes in the order of several MPa in magnitude compared with the pre-production stress state, and some changes in stress orientations, especially in the vicinity of faults. This was validated using well images and direct stress measurements, indicating the ability of the 4D MEM to capture the changes in stress magnitudes and orientations caused by depletion. In the computed results, the 4D MEM captures the onset of pore collapse and its accelerating response as observed in the laboratory tests conducted on cores taken from different reservoir units. Pore collapse is predicted in later production years in areas with high porosity, and it is localized. The model highlights the influence of stress changes on porosity and permeability changes over time, thus providing insights into the planning of infill drilling and water injection. Qualitatively, the results provide invaluable insights into delineating potential sweet spots for stimulation by hydraulic fracturing.

1973 ◽  
Vol 13 (1) ◽  
pp. 49 ◽  
Author(s):  
Keith Crank

The Barrow Island oil field, which was discovered by the drilling of Barrow 1 in 1964, was declared commercial in 1966. Since then 520 wells have been drilled in the development of this field which has resulted in 309 Windalia Sand oil producers (from about 2200 feet), eight Muderong Greensand oil wells (2800 feet), five Neocomian/Upper Jurassic gas and oil producers (6200 to 6700 feet), eight Barrow Group water source wells and 157 water injection wells.Production averages 41,200 barrels of oil per day, and 98% of this comes from the shallow Windalia Sand Member of Cretaceous (Aptian to Albian) age. These reserves are contained in a broad north-plunging nose truncated to the south by a major down-to-the-south fault. The anticline is thought to have been formed initially from a basement uplift during Late Triassic to Early Jurassic time. Subsequent periods of deposition, uplift and erosion have continued into the Tertiary and modified the structure to its present form. The known sedimentary section on Barrow Island ranges from Late Jurassic to Miocene.The Neocomian/Jurassic accumulations are small and irregular and are not thought to be commercial in themselves. The Muderong Greensand pool is also a limited, low permeability reservoir. Migration of hydrocarbons is thought to have occurred mainly in the Tertiary as major arching did not take place until very late in the Cretaceous or early in the Palaeocene.The Windalia Sand reservoir is a high porosity, low permeability sand which is found only on Barrow Island. One of the most unusual features of this reservoir is the presence of a perched gas cap. Apparently the entire sand was originally saturated with oil, and gas subsequently moved upstructure from the north, displacing it. This movement was probably obstructed by randomly-located permeability barriers.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. B9-B21
Author(s):  
Filipe Borges ◽  
Martin Landrø ◽  
Kenneth Duffaut

On 7 May 2001, a seismic event occurred in the southern North Sea in the vicinity of the Ekofisk platform area. Analysis of seismological recordings of this event indicated that the epicenter is likely within the northern part of the field and its hypocenter lies in the shallow sedimentary layer. Further investigation in this same area revealed a small seabed uplift and identified an unintentional water injection in the overburden. The injection presumably caused the seabed uplift in addition to stress changes in the overburden. To better understand the consequences of this water injection, we analyze marine seismic data acquired before and after the seismological event. The 4D analysis reveals a clear traveltime shift close to the injection well, as well as a weak amplitude difference. We find that these measured time shifts correspond reasonably well with modeled time shifts based on a simple geomechanical model. The modeling also correlates well with the observed bathymetry changes at the seabed and with global positioning system measurements at the platforms. Although no explicit amplitude sign of the seismic event could be detected in the seismic data, the modeled stress changes, combined with the effect of decades of production-induced reservoir compaction, suggest a source mechanism for the far-field seismological recordings of the May 7th event.


2021 ◽  
Author(s):  
Vai Yee Hon ◽  
M Faizzudin Mat Piah ◽  
Noor 'Aliaa M Fauzi ◽  
Peter Schutjens ◽  
Binayak Agarwal ◽  
...  

Abstract An integrated 3D dynamic reservoir geomechanics model can provide a diverse 3D view of depletion-injection-induced field stress changes and the resulting deformation of both reservoir and overburden formations at various field locations. It enables the assessment of reservoir compaction, platform site subsidence, fault reactivation and caprock integrity associated with multiple production and injection reservoirs of the field. We demonstrated this integrated approach for a study field located in the South China Sea, Malaysia, which is planned for water injection for pressure support and EOR scheme thereafter. Reservoir fluid containment during water injection is an important concern because of the intensive geologic faulting and fracturing in the collapsed anticlinal structure, with some faults extending from the reservoirs to shallow depths at or close to the seafloor. Over 30 simulations were done, and most input parameters were systematically varied to gain insight in their effect on result that was of most interest to us: The tendency of fault slip as a function of our operation-induced variations in pore pressure in the reservoir rocks bounding the fault, both during depletion and injection. The results showed that depletion actually reduces the risk of fault slip and of the overburden, while injection-induced increase in pore fluid pressure will lead to a significant increase in the risk of fault slip. Overall, while depletion appears to stabilize the fault and injection appears to destabilize the fault, no fault slip is predicted to occur, not even after a 900psi increase in pore pressure above the pore pressure levels at maximum depletion. We present the model results to demonstrate why depletion and injection have such different effects on fault slip tendency. The interpretation of these geomechanical model results have potential applications beyond the study field, especially for fields with a similar geology and development plan. This is a novel application of 3D dynamic reservoir geomechanics model that cannot be obtained from 1D analytical models alone.


2020 ◽  
pp. 1-46
Author(s):  
William Neely ◽  
Ahmed Ismail ◽  
Mohammed Ibrahim ◽  
James Puckette

The Meramec interval within the “STACK” play of the Anadarko Basin in central Oklahoma has been recently at the epicenter of increased exploration and production of oil and gas. It has become one of the top target intervals of the “Mid-Continent” aided by the technological advancements in horizontal drilling and completion techniques. The Meramec interval, mainly composed of argillaceous siliciclastic sediments with varying amounts of carbonate cement, exhibits high porosity heterogeneity, which is theorized to be caused by varying amounts of clay and post-depositional calcite cement. Characterization of the porosity heterogeneity in the Meramec interval will improve our understanding of the wide range in Meramec oil and gas production volumes and reduce the risk associated with drilling and completion techniques. We completed an initial interpretation followed by inversion of 3D seismic data where we generated a detailed characterization of the porosity heterogeneity and overall reservoir quality within the Meramec interval over an area of approximately 150 square kilometers. We then used the 3D seismic volume and available well logs to map the vertical and lateral extents of the Meramec interval and identify possible structural elements that could affect the reservoir quality. A petrophysical analysis of the well logs confirmed porosity heterogeneity and variations in volumetric calculations of clay and carbonate minerals. Finally, we generated a set of porosity volumes using the acoustic impedance from seismic inversion and probabilistic neural network methods. The derived porosity volume helped us identify porous and non-porous intervals within the Meramec throughout the study area. The results improved our understanding of Meramec heterogeneity, further reducing the risk associated with well planning, drilling and completion.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1235
Author(s):  
Kamila Gawel ◽  
Dawid Szewczyk ◽  
Pierre Rolf Cerasi

Chemical reactions with reservoir fluids and geology related in-situ stress changes may cause damages to cement sealing material in plugged and abandoned oil, gas and CO2 wells. To avoid leakages, a legitimate monitoring technique is needed that could allow for early warning in case such damages occur. In this paper, we test the utility of oil and gas well cement with a conductive filler in sensing stress changes. To this end, we have measured the resistance response of Portland G—oil and gas well cement with carbon nanofibers (CNF) to axial load during uniaxial compressive strength test. Simultaneously, the microseismicity data were collected. The resistance of the nanocomposite was measured using two-point method in the direction of loading. The resistance changes were correlated with acoustic emission events. A total of four different material response regions were distinguished and the resistivity and acoustic emission changes in these regions were described. Our results suggest that the two complementary methods, i.e., acoustic emission and resistance measurements, can be used for sensing stress state in materials including well cement/CNF composites. The results suggest that the well cement/CNF composites can be a good candidate material to be used as a transducer sensing changes in stress state in, e.g., well plugs up to material failure.


Geology ◽  
2021 ◽  
Author(s):  
Noam Z. Dvory ◽  
Mark D. Zoback

We demonstrate that pore pressure and stress changes resulting from several decades of oil and gas production significantly affect the likelihood of injection-related induced seismicity. We illustrate this process in the Delaware Basin (western Texas and southeastern New Mexico, USA), in which hydraulic fracturing and waste-water injection have been inducing numerous earthquakes in the southernmost part of the basin where there has been no prior oil and gas production from the formations in which the earthquakes are now occurring. In the seismically quiescent part of the basin, we show that pore-pressure and poroelastic-stress changes associated with prior oil and gas production make induced seismicity less likely. The findings of this study have important implications for the feasibility of large-scale carbon storage in depleted oil and gas reservoirs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.


2021 ◽  
Author(s):  
April Allen Langhans ◽  
Robert Moucha ◽  
Michael Keith Paciga

<p>The feedback between climate driven processes; weathering, erosion, sediment transport, and deposition, and extensional tectonics is limited to a few studies (Burov and Cloething, 1997; Burov and Poliakov, 2001; Bialas and Buck, 2009; Theunissen and Huismans, 2019; Andrés-Martínez et al., 2019) despite these processes having been shown to impact the stress state and deformation along active orogens (Koons, 1989; Molnar and England, 1990; Avouac and Burov, 1996; Willett, 1999). Here we utilize a fully coupled landscape evolution and thermomechanical extensional model to investigate the potential impact on faulting and extension due to lake loading changes driven by changes in climate on processional timescales. Fault analyses focusing on heave, throw, and magnitude of dip on faults generated within each model are used to characterize individual faults response to stress changes and rift basin evolution. Preliminary results indicate that fluctuations in lake levels in response to climate change may impact the lithospheric stress state by changing both fault and basin geometries within an extensional basin.</p>


2021 ◽  
Vol 19 (3) ◽  
pp. 848-853
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.


Sign in / Sign up

Export Citation Format

Share Document