scholarly journals Preparation and Comparative Study of Aerogels Based on Cellulose Nanocrystals and Nanofibers from Eucalyptus Pulp

Author(s):  
Wenkai Zhu ◽  
Yang Zhang ◽  
Xiaoyu Wang ◽  
Yan Wu ◽  
Minsu Han ◽  
...  

Abstract Nanocellulose-based materials have attracted significant attention because of their attractive advantages. Particularly, aerogel, a porous nanocellulose material, have been used in diverse applications owing to their unique properties. In this study, short rod-like cellulose nanocrystals (CNCs) and long filament-like cellulose nanofibers (CNFs) were isolated from a eucalyptus pulp source using acidolysis and oxidation/mechanical methods, respectively. Subsequently, two different aerogels were prepared from the CNCs and CNFs using the sol-gel method and their properties were compared. The morphology, chemical structure, chemical composition, shrinkage rate, internal structure, thermal degradation, biophysical properties, and mechanical properties of the as-prepared aerogels were compared. Furthermore, the shrinkage of the CNC and CNF aerogels was effectively controlled using a supercritical CO2 drying process. Additionally, three decomposition regions were observed in the thermogravimetric analysis curves of the aerogels; however, the CNF aerogels exhibited enhanced thermal stability than the CNC aerogels. Further, the CNC and CNF aerogels exhibited a mesoporous structure, and the compressive strength of the CNC and CNF aerogels under 85% strain was 269.5 and 299.5 KPa, respectively. This study provides fundamental knowledge on the fabrication of CNCs, CNFs, and corresponding aerogels from lignocellulosic biomass, and their characteristics.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 11738-11744 ◽  
Author(s):  
Dongman Guo ◽  
Yun Lu ◽  
Yibo Zhao ◽  
Xuetong Zhang

Graphene/ZrO2 composite aerogels with large BET areas have been synthesized using a sol–gel method together with a supercritical fluid drying process.


1974 ◽  
Vol 47 (2) ◽  
pp. 342-356 ◽  
Author(s):  
V. A. Grechanovskii ◽  
I. Ya Poddubnyi ◽  
L. S. Ivanova

Abstract By changing the sol-gel ratio and the structure of the gel fraction it is possible to obtain various grades of synthetic cis-poly(isoprene) which show promise for different applications in the tire and mechanical rubber goods industries. The processability of commercial SKI-3 rubber (at a given average molecular weight of sol) depends mainly on the structure of the gel fraction. Thus, for example, inferior processing properties of rubber compounds is associated primarily with the presence of tight gel. The content and structure of the gel fraction also significantly affect plasto-elastic properties of raw rubbers, e.g. a low plasticity of raw rubbers owes to the increased content of gel fraction. The reduced green strength of compounds based on SKI—3 rubber is accounted for by its chemical structure. Conventional methods used to change the properties of rubbers (including the variation in molecular weight, molecular weight distribution, branching degree, and variation in the content and structure of gel fraction) cannot be considered to be adequate to tackle the problem of the green strength of SKI—3 black stocks. The way to solve the problem appears to be the introduction of functional groups into the polymer chain at the stage of synthesis or processing. These functional groups should be active as to the formation of labile rubber—carbon black—rubber and/or rubber—rubber bonds. High purity of microstructure is necessary but not sufficient for obtaining the required level of green strength of compounded SKI—3. The gel fractions of SKI—3 rubber yield vulcanizates with a more dense network than the corresponding sol vulcanizates. The temperature dependence of the tensile strength is controlled by the network density of vulcanizates from high cis-1,4 poly(isoprene).


Author(s):  
Rita Bacelar Figueira

The properties and wide application range of organic-inorganic hybrid (O-IH) sol-gel materials have attracted significant attention over the past decades. The combination of organic polymers and inorganic materials in a single-phase provides exceptional possibilities to tailor electrical, optical and mechanical properties concerning diverse applications. This unlimited design concept has led to the development of diverse coatings for several applications such as glasses, and metals to mitigate mechanical abrasion, erosion and corrosion. This class of materials could be easily obtained by sol-gel method at mild synthesis conditions. Furthermore, the large variety of available chemical precursors allows producing a diversity of coatings with tuned mechanical and thermal properties. This chapter will introduce the fundamentals of the sol-gel method to produce O-IH protective thin coatings and discuss the methodologies used to apply these materials onto different metallic substrates for erosion and corrosion protection.


2020 ◽  
Vol 10 (3) ◽  
pp. 1019 ◽  
Author(s):  
Jiali Cui ◽  
Feng Zhang ◽  
Hongyan Li ◽  
Jianguo Cui ◽  
Yatao Ren ◽  
...  

Biochar (BC) is a carbon-rich material produced from pyrolysis of biomass. In addition to its low toxicity, environmental compatibility, and low cost, BC has the desired advantages of well-developed mesoporous structure and abundant surface functional groups. In recent years, BC-based photocatalysts (BCPs) have played a significant role in many environmental fields. In this paper, we highlight the current progress and several exciting results of BCPs by focusing on their synthesis, characterization, mechanisms, and applications in wastewater treatment. Details on various preparation methods include sol–gel, hydrothermal/solvothermal, ultrasound, calcination, and in situ methods are summarized and discussed. The underlying mechanisms and the applications of BCPs for different semiconductors are reviewed. Furthermore, some future trends and potentials are outlined.


2020 ◽  
Vol 8 (21) ◽  
pp. 10779-10786 ◽  
Author(s):  
Cong Wang ◽  
Jian Li ◽  
Erwan Paineau ◽  
Abdelghani Laachachi ◽  
Christophe Colbeau-Justin ◽  
...  

Light harvesting capability and charge carrier lifetime play critical roles in determining the photoefficiency of a photocatalyst.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 78 ◽  
Author(s):  
Priscila Siqueira ◽  
Éder Siqueira ◽  
Ana Elza De Lima ◽  
Gilberto Siqueira ◽  
Ana Delia Pinzón-Garcia ◽  
...  

Hydrogels have been studied as promising materials in different biomedical applications such as cell culture in tissue engineering or in wound healing. In this work, we synthesized different nanocellulose-alginate hydrogels containing cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals (CNCTs), cellulose nanofibers or TEMPO-oxidized cellulose nanofibers (CNFTs). The hydrogels were freeze-dried and named as gels. The nanocelluloses and the gels were characterized by different techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA), while the biological features were characterized by cytotoxicity and cell growth assays. The addition of CNCTs or CNFTs in alginate gels contributed to the formation of porous structure (diameter of pores in the range between 40 and 150 μm). TEMPO-oxidized cellulose nanofibers have proven to play a crucial role in improving the dimensional stability of the samples when compared to the pure alginate gels, mainly after a thermal post-treatment of these gels containing 50 wt % of CNFT, which significantly increased the Ca2+ crosslinking density in the gel structure. The morphological characteristics, the mechanical properties, and the non-cytotoxic behavior of the CNFT-alginate gels improved bioadhesion, growth, and proliferation of the cells onto the gels. Thus, the alginate-nanocellulose gels might find applications in tissue engineering field, as for instance, in tissue repair or wound healing applications.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 179 ◽  
Author(s):  
Shiao-Wen Tsai ◽  
Wen-Xin Yu ◽  
Pai-An Hwang ◽  
Sheng-Siang Huang ◽  
Hsiu-Mei Lin ◽  
...  

Hydroxyapatite (HAp) is the main inorganic component and an essential part of hard bone and teeth. Due to its excellent biocompatibility, bioactivity, and osteoconductivity, synthetic HAp has been widely used as a bone substitute, cell carrier, and therapeutic gene or drug carrier. Recently, numerous studies have demonstrated that strontium-substituted hydroxyapatite (SrHAp) not only enhances osteogenesis but also inhibits adipogenesis in mesenchymal stem cells. Mesoporous SrHAp has been successfully synthesized via a traditional template-based process and has been found to possess better drug loading and release efficiencies than SrHAp. In this study, strontium-substituted hydroxyapatite-CaO-CaCO3 nanofibers with a mesoporous structure (mSrHANFs) were fabricated using a sol–gel method followed by electrospinning. X-ray diffraction analysis revealed that the contents of CaO and CaCO3 in the mSrHANFs decreased as the doping amount of Sr increased. Scanning electron microscopy (SEM) images showed that the average diameter of the mSrHANFs was approximately 200~300 nm. The N2 adsorption–desorption isotherms demonstrated that the mSrHANFs possessed a mesoporous structure and that the average pore size was approximately 20~25 nm. Moreover, the mSrHANFs had excellent drug- loading efficiency and could retard the burst release of tetracycline (TC) to maintain antibacterial activity for over 3 weeks. Hence, mSrHANFs have the potential to be used as drug carriers in bone tissue engineering.


Reactions ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 195-209
Author(s):  
Yanyong Liu

A low-density polyethylene was hydrocracked to liquid hydrocarbons in autoclave reactors over catalysts containing Pt- and Al-modified MCM-48. Two kinds of Al-modified MCM-48 were synthesized for the reaction: Al-MCM-48 was synthesized using a sol–gel method by mixing Al(iso-OC3H7)3 with Si(OC2H5)4 and surfactant in a basic aqueous solution before hydrothermal synthesis, and Al/MCM-48 was synthesized using a post-modification method by grafting Al3+ ions on the surface of calcined Al/MCM-48. X-ray diffraction (XRD) patterns indicated that both Al-MCM-48 and Al/MCM-48 had a cubic mesoporous structure. The Brunauer–Emmett–Teller (BET) surface areas of Al-MCM-48 and Al/MCM-48 were larger than 1000 m2/g. 27Al Magic Angle Spinning-NMR (MAS NMR) indicated that Al3+ in Al-MCM-48 was located inside the framework of mesoporous silica, but Al3+ in Al/MCM-48 was located outside the framework of mesoporous silica. The results of ammonia temperature-programmed desorption (NH3-TPD) showed that the acidic strength of various samples was in the order of H-Y > Al/MCM-48 > Al-MCM-48 > MCM-48. After 4 MPa H2 was charged in the autoclave at room temperature, 1 wt % Pt/Al/MCM-48 catalyst showed a high yield of C9−C15 jet fuel range hydrocarbons of 85.9% in the hydrocracking of polyethylene at 573 K for 4 h. Compared with the reaction results of Pt/Al/MCM-48, the yield of light hydrocarbons (C1−C8) increased over Pt/H-Y, and the yield of heavy hydrocarbons (C16−C21) increased over Pt/Al-MCM-48 in the hydrocracking of polyethylene. The yield of C9−C15 jet fuel range hydrocarbons over the used catalyst did not decrease compared to the fresh catalyst in the hydrocracking of polyethylene to jet fuel range hydrocarbons over Pt/Al/MCM-48.


Sign in / Sign up

Export Citation Format

Share Document