scholarly journals Multidrug-Resistant Klebsiella Pneumoniae: A Retrospective Study in Manaus, Brazil

Author(s):  
Rafael Nakamura-Silva ◽  
Louise Cerdeira ◽  
Mariana Oliveira-Silva ◽  
Karen Regina Carim da Costa ◽  
Elder Sano ◽  
...  

Abstract Klebsiella pneumoniae is an opportunistic pathogen that can cause several infections, mainly in hospitalised or immunocompromised individuals. The spread of K. pneumoniae emerging virulent and multidrug-resistant clones is a worldwide concern and its identification is crucial to control these strains especially in hospitals. This article reports data related to multi-resistant K. pneumoniae strains, isolated from inpatients in the city of Manaus, Brazil, harbouring virulence and antimicrobial resistance genes, including high-risk international clones belonging to clonal group (CG) 258. Twenty-one strains isolated from different patients admitted to four hospitals in the city of Manaus, located in the state of Amazonas, Northern Brazil (Amazon Rainforest region) were evaluated. The majority of strains (61.9 % n = 13) were classified as multidrug-resistant (MDR), and five strains (23.8 %) as extensively drug-resistant (XDR). Several virulence and antimicrobial resistance genes were found among the strains and eight strains (38.1 %) presented the hypermucoviscous phenotype. MLST analysis demonstrated a great diversity of STs among the strains, totaling 12 different STs (ST11, ST23, ST198, ST277, ST307, ST340, ST378, ST462, ST502, ST3991, ST3993 and ST5209). Four of these (ST11, ST23, ST307 and ST340) belong to CG258.

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Weihua Huang ◽  
Guiqing Wang ◽  
Robert Sebra ◽  
Jian Zhuge ◽  
Changhong Yin ◽  
...  

ABSTRACT The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the bla KPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-bla KPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance.


2021 ◽  
Vol 9 (9) ◽  
pp. 1880
Author(s):  
Radwa Abdelwahab ◽  
Munirah M. Alhammadi ◽  
Ehsan A. Hassan ◽  
Entsar H. Ahmed ◽  
Nagla H. Abu-Faddan ◽  
...  

Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a blaNDM-1 carbapenemase and extended spectrum β-lactamase genes (i.e., blaSHV-40, blaTEM-1B, blaOXA-9 and blaCTX-M-15). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.


2021 ◽  
Vol 9 (2) ◽  
pp. 242
Author(s):  
Peechanika Chopjitt ◽  
Nuntiput Putthanachote ◽  
Ratchadaporn Ungcharoen ◽  
Rujirat Hatrongjit ◽  
Parichart Boueroy ◽  
...  

Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates, ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63 (A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744 (A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China. Strict implementation of infection control based upon the framework of epidemiological analyses is essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and close monitoring with molecular epidemiological tools are needed.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Hany R. Hashem ◽  
Khyreyah J. Alfifi ◽  
Helal F. Hetta ◽  
Norhan S. Sheraba ◽  
...  

AbstractProteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Silpi Basak ◽  
Priyanka Singh ◽  
Monali Rajurkar

Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital.Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria.Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin.Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.


Author(s):  
Sara Davoudabadi ◽  
Hossein Goudarzi ◽  
Mehdi Goudarzi ◽  
Abdollah Ardebili ◽  
Ebrahim Faghihloo ◽  
...  

Abstract In this study, we focused on the emergence of extensively drug-resistant (XDR), pandrug-resistant (PDR), and hypervirulent Klebsiella pneumoniae (hvKP) in Iran. During 2018 to 2020 a total of 52 K. pneumoniae isolates were collected from different clinical specimens. The hvKP isolates were identified by PCR amplification of virulence and capsular serotype-specific genes. Hypermucoviscous K. pneumoniae (hmKP) were identified by string test. Carbapenem-resistant hvKP (CR-hvKP), multidrug-resistant hvKP (MDR-hvKP), extensively drug-resistant hvKP (XDR-hvKP), and pandrug-resistant hvKP (PDR-hvKP) were determined by disc diffusion method, Carba-NP test and PCR method. XDR-hvKP isolates were typed by multilocus sequence typing (MLST). Among all K. pneumoniae isolates 14 (26.9%) were identified as hvKP and 78.6% (11/14) of them were hmKP however, none of the classic K. pneumoniae (cKP) isolates were hmKP. The predominant capsular serotype of hvKP was K2 (42.85%) followed by K1 (35.71%). The prevalence of MDR-hvKP, XDR-hvKP and PDR-hvKP isolates were 6 (42.9%), 5 (35.7%) and 1 (7.1%), respectively. ESBL production was found in 85.7% of hvKP isolates and most of them carried bla TEM gene (78.6%) and 6 isolates (42.9%) were CR-hvKP. Among hvKP isolates, 1 (7.1%), 2 (14.3%), 3 (21.4%), 8 (28.6%), and 11 (78.6%) carried bla NDM-6, bla OXA-48, bla CTX-M, bla SHV, and bla TEM genes, respectively. According to MLST analysis, 2, 1, 1, and 1 XDR-hvKP isolates belonged to ST15, ST377, ST442, and ST147, respectively. The occurrence of such isolates is deeply concerning due to the combination of hypervirulence and extensively drug-resistance or pandrug-resistance.


Sign in / Sign up

Export Citation Format

Share Document