scholarly journals Use of eco-benign periwinkle shell particle for making composites and study their effect on the thermal and mechanical properties of novel HDPE composites

Author(s):  
Abbas Saifee Valsadwala ◽  
Sriram Sriniva ◽  
Surya Rajan Balachandran ◽  
Shamshath Begum ◽  
Asit Baran Samui ◽  
...  

Abstract In this investigation, the shell powder of Littorina littorea commonly called periwinkle was used as an eco-benign filler in High-Density Polyethylene (HDPE) to form periwinkle/HDPE composites (PHPC). Understanding the effect of different particle sizes of periwinkle shell powder (PSP) and optimizing their influence on PHPC is the main scope of work. Periwinkle shell (PS) particle sizes from <53 μm to 150 μm were chosen as reinforcement. The different PSP size like <53 μm, 53 μm, 75 μm, 90 μm, 105 μm and 150 μm chosen in this study were named as PHPCL53, PHPC53, PHPC75, PHPC90, PHPC105, and PHPC150 respectively. The composites were fabricated by incorporating 1 weight % of PSP into HDPE matrix using compression molding technique and then subjected to morphological, thermal, and mechanical characterizations. Morphology studies using scanning electron microscope (SEM) confirms 150 μm PSP had best dispersion whereas 75 μm PSP resulted with agglomeration. PSP had little influence on the thermal stability of HDPE except for PHPC150 which showed rise in degradation temperature when compared to the neat sample. Mechanical properties such as hardness, Young’s modulus, impact strength, and flexural modulus were enhanced by the addition of PSP. Whereas, a decrease was noted in elongation at break (%) and flexural strength of PHPC indicating the stiffening effect of filler on HDPE. In order to understand the particle size influence better, the extension evaluation method (EEM) was performed for all samples and PHPC150 was found to be the best performing among all particle sizes.

2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shahril Anuar Bahari ◽  
Warren J. Grigsby ◽  
Andreas Krause

Polyvinyl chloride (PVC)/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites toca.70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm) or coarse (<1 mm) particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.


2014 ◽  
Vol 6 ◽  
pp. 640496 ◽  
Author(s):  
G. V. Salmoria ◽  
D. Hotza ◽  
P. Klauss ◽  
L. A. Kanis ◽  
C. R. M. Roesler

The techniques of Rapid Prototyping, also known as Additive Manufacturing, have prompted research into methods of manufacturing polymeric materials with controlled porosity. This paper presents the characterization of the structure and mechanical properties of porous polycaprolactone (PCL) fabricated by Selective Laser Sintering (SLS) using two different particle sizes and laser processing conditions. The results of this study indicated that it is possible to control the microstructure, that is, pore size and degree of porosity, of the polycaprolactone matrix using the SLS technique, by varying the particle size and laser energy density, obtaining materials suitable for different applications, scaffolds and drug delivery and fluid mechanical devices. The specimens manufactured with smaller particles and higher laser energy density showed a higher degree of sintering, flexural modulus, and fatigue resistance when compared with the other specimens.


BioResources ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. 1618-1625
Author(s):  
M. Alamgir Kabir ◽  
M. Monimul Huque ◽  
M. Rabiul Islam ◽  
Andrzej K. Bledzki

Raw jute fiber was treated with o-hydroxybenzenediazonium salt (o-HBDS) in alkaline media. Raw and modified jute fiber were used to prepare composites by mixing with polypropylene (PP) plastic in different weight fractions (20, 25, 30, and 35%) of jute fiber. The mechanical properties except elongation at break of o-HBDS-treated (in alkaline medium) jute fiber-PP composite were higher than those of PP alone, raw jute fiber-PP composites, and alkali-treated jute fiber-PP composites. The elongation at break of treated jute-PP composite decreased to a large extent as compared to that of PP. The increase of tensile strength, tensile modulus, flexural strength, flexural modulus, and Charpy impact strength were found to be exceptionally high (in some cases ~200%) as compared to those of literature values.


2013 ◽  
Vol 712-715 ◽  
pp. 195-198
Author(s):  
Dong Mei Bao ◽  
Ji Ping Liu ◽  
Xiang Yang Hao

The organically modified montmorrillonite (OMMT)/phosphorus polymeic flame retardant (PFR)/polyamide 6(PA6) nanocomposites were prepared via melt intercalation on a twin-screw extruder. The structure formed in nanocomposite system was investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Properties such as flame retardancy, notched impact strength, tensile strength, elongation at break and flexural modulus were studied by limited oxygen index (LOI) approach, UL94, and mechanical property test. The results of the studies indicated that flame retardancy and mechanical properties of PA6 nanocomposites were all reinforced due to addition of OMMT and PFR.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1145 ◽  
Author(s):  
Pooria Khalili ◽  
Xiaoling LIU ◽  
Zirui ZHAO ◽  
Brina Blinzler

Natural fibre-reinforced poly(lactic acid) (PLA) laminates were prepared by a conventional film stacking method from PLA films and natural fabrics with a cross ply layup of [0/90/0/90/0/90], followed by hot compression. Natural fibre (NF) nano-hydroxyapatite (nHA) filled composites were produced by the same manufacturing technique with matrix films that had varying concentrations of nHA in the PLA. Their flammability, thermal, moisture absorption and mechanical properties were analysed in terms of the amount of nHA. The flame behavior of neat PLA and composites evaluated by the UL-94 test demonstrated that only the composite containing the highest quantity of nHA (i.e., 40 wt% nHA in matrix) was found to achieve an FH-1 rating and exhibited no recorded burn rate, whereas other composites obtained only an FH-3. The thermal degradation temperature and mass residue were also observed, via thermogravimetric analysis, to increase when increasing concentrations of nHA were added to the NF composite. The tensile strength, tensile modulus and flexural modulus of the neat resin were found to increase significantly with the introduction of flax fibre. Conversely, moisture absorption was found to increase and mechanical properties to decrease with both the presence of NF and increasing concentrations of nHA, and subsequent mechanical properties experienced an obvious reduction.


2013 ◽  
Vol 830 ◽  
pp. 172-175
Author(s):  
Cheng Zhi Chuai ◽  
Zhi Zhang

Ethylene glycol (EG) and polyethylene glycol (PEG) were added as plasticizers to improve the processing performance of cellulose acetate (CA). The CA with 30% plasticizers were melted by HAAKE at 200 °C. The effects of EG and PEG (degree of polymerization in 200-800) on rheological properties and mechanical properties of CA were investigated. The results show that the plasticizing time, equilibrium torque and melt viscosity of the plasticizing system increase with the increase of PEG molecular weight, while the processing performance decreased. The tensile strength of the system decrease as the PEG molecular weight increased. The plasticizing system which contents 30% PEG-200(degree of polymerization is 200) shows the maximum elongation at break. The minimum values appeared in both flexural strength and flexural modulus in the CA/PEG-200 system.


2021 ◽  
Vol 36 (5) ◽  
pp. 620-629
Author(s):  
L.-Y. Yu ◽  
B.-C. Xue ◽  
M.-M. Qian ◽  
Y.-X. Li ◽  
Z.-X. Chen ◽  
...  

Abstract Biochar has been exploited as a substitution of carbon black in the rubber industry and various biochars exhibit diverse reinforcing abilities due to the different compositions. This work aims at studying the effect of silica on the modification process and reinforcing performance through the comparison of three biochars with different contents of silica, pyrolytic rice husks (PRH, 34 wt%), pyrolytic bamboos (PB, 7 wt%) and pyrolytic corn cobs (PC, 0.4 wt%). The results reveal that PRH requires higher rotational speed (300 min–1) than PB (200 min–1) and PC (200 min–1) to achieve similar particle sizes during the ball milling process because of the aggregations of higher silica content. Meanwhile, silica-rich pyrolytic biomass exhibits enhanced reinforcement on mechanical properties and thermal stability of rubber, and the elongation at break of vulcanizates continues to improve with increasing silica contents. Combined with the energy consumption and reinforcement, biochar containing a little amount of silica is more suitable to be widely used as bio-filler in rubber industry. This work should serve as a valuable reference to select appropriate biochar for the production of bio-fillers with high reinforcement.


2016 ◽  
Vol 51 (12) ◽  
pp. 1769-1782 ◽  
Author(s):  
Alok Kumar Pandey ◽  
Kavita Singh ◽  
Kamal K Kar

Composite prepared by mixing of different forms of carbon or other reinforcing fillers with polymer, is one of the possible ways to enhance the performance of polymeric materials. The present work focuses on the study of viscoelastic, thermal, electrical and mechanical properties of graphite flake-reinforced high-density polyethylene composites. The composites are processed by melt mixing using vertical twin-screw micro-compounder followed by final sample preparation via micro injection moulding. The reinforcing filler, graphite flake, is varied from 0 to 50 vol.% with respect to the polymer matrix. Dynamic mechanical thermal analysis reveals an increase in the storage modulus (E′) as well as loss modulus (E″) throughout the temperature range; however, damping (tan δ) shows a mixed behaviour. There is 550% and 479% increase of E′ and E″ in the rubbery region. Degree of entanglement, reinforcement efficiency and C factor are also calculated and correlated with the mechanical properties. On comparison, high-density polyethylene /graphite flake composite having 50 vol.% graphite flake with pure high-bcdensity polyethylene shows 52% increase in melt viscosity, whereas bulk density increases by 38%. This graphite flake is also responsible for the increase in the thermal stability (shift in the onset degradation temperature of ∼7℃ and the degradation temperature is more than 400℃), thermal conductivity (175% improvement) and electrical conductivity (∼6125% improvement, as the conductivity of pristine high-density polyethylene is ∼9.67 E-08 S/m). Mechanical properties determined by tensile and flexural tests show an initial increase and then a slight decrease in the tensile and flexural strength. Therefore, the graphite flake-reinforced high-density polyethylene composite with improved thermal conductivity, electrical conductivity, heat stability, viscoelastic behaviour and flexural modulus can be a promising as well as suitable composite material for making of various electronic and electrical accessories including bipolar plate for fuel cell applications.


Sign in / Sign up

Export Citation Format

Share Document