scholarly journals ZnO Nanoparticle-based Seed Priming Modulates Early Growth and Enhances Physio-biochemical and Metabolic Profiles of Fragrant Rice Against Cadmium Toxicity

Author(s):  
Yuzhan Li ◽  
Luxin Liang ◽  
Wu Li ◽  
Umair Ashraf ◽  
Lin Ma ◽  
...  

Abstract Background: Cadmium (Cd) is among the most toxic heavy metals that severely affects crop growth, and in this purview numerous recent research initiatives have focused on the application of nanoparticles (NPs) to negate the toxic effects of heavy metals such as Cd. Method: In the present study, the seeds of two fragrant rice cultivars, namely Yuxiangyouzhan and Xiangyaxiangzhan, were grown after exposure to four ZnO NPs treatment (0, 25, 50, and 100 mg L-1), with or without the presence of Cd (100 mg L-1). Result: The results revealed that priming seeds with ZnO NPs had no significant effect on the seed germination (p > 0.05) however, it substantially improved the seedling growth and other related physiological attributes under the Cd stress. The mean fresh weight of the shoot, and whole seedling increased after ZnO NPs treatment by 16.92%-27.88% and 12.82-33.58%, respectively. The fresh weight of root, length of the shoot, and the root increased after ZnO NPs treatment. Moreover, remarkable changes in the physiological response of seedlings under ZnO NPs treatment were detected. The metabolomic analysis was performed to discern the underlying regulation of the metabolisms after ZnO NPs treatment for seedlings under Cd stress. Conclusion: Our findings provide new insight into the influence of ZnO NPs on seed germination, and the growth of crop plants, and may find potential applications in developing crop resilience in Cd laden agricultural lands.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuzhan Li ◽  
Luxin Liang ◽  
Wu Li ◽  
Umair Ashraf ◽  
Lin Ma ◽  
...  

Abstract Background Cadmium (Cd) is amongst the most toxic heavy metals that severely affects crop growth, whereas application of nanoparticles (NPs) to negate the toxic effects of heavy metals could be an effective management approach. In the present study, the seeds of two fragrant rice varieties i.e., Yuxiangyouzhan and Xiangyaxiangzhan under normal and Cd stress conditions i.e., 0 and 100 mg L− 1 applied with four levels of ZnO NPs i.e., 0, 25, 50, and 100 mg L− 1. Results Seed priming with ZnO NPs had no significant effect on the seed germination (p > 0.05) however, it substantially improved the seedling growth and other related physiological attributes under the Cd stress. The mean fresh weight of the shoot, and whole seedling was increased by 16.92–27.88% and by 16.92–27.88% after ZnO NPs application. The root fresh weight, root-shoot length was also substantially improved under ZnO NPs treatment. Moreover, application of ZnO NPs induced modulations in physiological and biochemical attributes e.g., the superoxide dismutase (SOD) activity in root and shoot, the peroxidase (POD) activity and metallothionein contents in root were increased under low levels of ZnO NPs. The α-amylase and total amylase activity were improved by ZnO NPs application under Cd Stress. Besides, modulation in Zn concentration and ZnO NPs uptake in the seedling were detected. The metabolomic analysis indicated that various pathways such as alanine, aspartate and glutamate metabolism, phenylpropanoid biosynthesis, and taurine and hypotaurine metabolism were possibly important for rice response to ZnO NPs and Cd. Conclusion Overall, application of ZnO NPs substantially improved the early growth and related physio-biochemical attributes in rice. Our findings provide new insights regarding the effects of ZnO NPs on seed germination, and early growth of rice, and its potential applications in developing crop resilience against Cd contaminated soils.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


Author(s):  
Muhammad Abdus Sobahan

Seed priming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. The effect of seed priming with proline on germination and seedling growth of mungbean (Vigna radiata L.) under salt stress was investigated. The experiment carried out in completely randomized design with three replications in May 2018 at the Research Laboratory of the School of Agriculture and Rural Development, Bangladesh Open University, Gazipur, Bangladesh. Salt stress at 5 dSm-1 decreased seed germination percentage, plumule length, radicle length, plumule fresh weight, radicle fresh weight and seed vigour index compared to control. Seed priming with proline increased germination percentage (53.84%), plumule length, radicle length, plumule fresh weight, radicle fresh weight and seed vigour index under salt stress. The results suggested that seed priming with proline could effectively alleviate the inhibitory effects of salt stress on seed germination and seedling growth of mungbean. South Asian J. Agric., 7(1&2): 15-18


Author(s):  
Mahmud Mohammed Imam ◽  
Zahra Muhammad ◽  
Amina Zakari

In this research work the concentration of zinc, copper, lead, chromium, cadmium, and nickel in cow milk samples obtained from four different grazing areas   (kakuri, kudendan, malali, kawo) of Kaduna metropolis. The samples were digested by wet digestion technique .The trace element were determined using bulk scientific model VPG 210 model  Atomic Absorption Spectrophotometer (AAS).. The concentration of the determined heavy metal were The result revealed that Cr,  Ni and Cd were not detected in milk samples from Kawo, Malali  and Kudendan whereas lead (Pb) is detected in all samples and found to be above  the stipulated limits of recommended dietary allowance (NRC,1989) given as 0.02mg/day. Cu and Zn are essential elements needed by the body for proper metabolism and as such their deficiency or excess is very dangerous for human health. However, they were found in all samples and are within the recommended limits while Cd (2.13 – 3.15 mg/kg) in milk samples from Kakuri was found to be above such limit (0.5mg/day). Cow milk samples analyzed for heavy metals in this research work pose a threat of lead and cadmium toxicity due to their exposure to direct sources of air, water and plants in these grazing areas, thereby, resulting to a potential health risk to the consumers.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2017 ◽  
Vol 68 (10) ◽  
pp. 2363-2366
Author(s):  
Delia Nica Badea

The paper evaluates the presence and content of traces of heavy metals Hg, Pb, Ni, Cd (total forms) from coal and solid combustion products, the degree of transfer and accessibility in the area of influence of a lignite power plant. The content of toxic heavy metals in residues are characterized by RE Meiji [ 1 (Pb and Hg) and REMeij �1 (Ni and Cd) for the filter ash. Pb and Ni content in the soil exceeds normal values, and Pb exceeds and alert value for sensitive soils around the residue deposit (70.20 mg.Kg-1). The degree of accessibility of the metals in plants (TF), reported at the Khan reference value (0.5), indicates a significant bioaccumulation level for the metals: Cd (1.9) and Hg (0.6) inside the deposit; Cd (0.39) at the base of the deposit, Hg (0.8) in the area of the thermal power plant. The trace levels of heavy metals analyzed by GFAAS and CVAAS (Hg), indicates a moderate risk potential for food safety and quality of life in the studied area.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


Author(s):  
Varsha Shukla ◽  
Siddharth Kumar Das ◽  
Abbas Ali Mahdi ◽  
Shweta Agarwal ◽  
Ragini Alok ◽  
...  

BACKGROUND: Fibromyalgia syndrome (FMS) is an extra-articular rheumatological disease characterised by widespread chronic musculoskeletal pain. Metal-induced oxidative stress contributes to the severity of FMS. AIMS: First, this study evaluated the association between plasma levels of toxic heavy metals and essential metals with oxidative stress (OS) markers. Second, the OS markers and metal contents were correlated with the disease severity by assessing the Fibromyalgia Impact Questioner Revised (FIQR) and tender points (TP). METHOD: A total of 105 FMS patients and 105 healthy controls of similar age and sex were recruited. OS parameter such as lipid peroxidation (LPO), protein carbonyl group (PCG), nitric oxide (NO) and essential metals such as zinc (Zn), magnesium (Mg), manganese (Mn), copper (Cu) and toxic heavy metals such as aluminium (Al), arsenic (As), lead (Pb) were estimated. RESULTS: Levels of LPO, PCG, NO (p< 0.001) and Cu, Mn, and Al (p< 0.001), were significantly higher, and Mg (p< 0.001) and Zn (p< 0.001) were significantly lower in patients compared to controls. A positive association was observed between OS parameters, FIQR and TP with Cu, Al and Mn. A significant negative association was observed between Zn and Mg with FIQR, TP and OS parameters. CONCLUSION: Heavy metals such as Al induce OS parameters and decrease the levels of essential trace elements such as Mg and Zn, which may be responsible for the severity of FMS.


Sign in / Sign up

Export Citation Format

Share Document