Decitabine Reverses CSC-Induced Docetaxel Resistance via Epigenetic Regulation of DAB2IP in TNBC.

2020 ◽  
Author(s):  
Zhenchong Xiong ◽  
Lin Yang ◽  
Lu Yang ◽  
Jianchang Fu ◽  
Peng Liu ◽  
...  

Abstract Background: Although docetaxel (DOC)-based chemotherapy, the standard of care for triple-negative breast cancer (TNBC), has greatly improved cancer survival, chemoresistance invariably evolves. Methods: Using TNBC and docetaxel-resistant TNBC cell lines, we established murine breast cancer xenograft models to evaluate the impact of decitabine on DOC resistance. The methylation status of DAB2IP was evaluated in 226 TNBC patients and TNBC cell lines by BSP analysis. A limiting dilution assay was performed to evaluate the tumorigenic capacity in vivo. Cellular and molecular mechanisms were demonstrated using in vivo and in vitro biochemical methods.Results: Here, we observed that a low dose of DAC significantly prevented the evolution of DOC resistance via inhibition of cancer stem cell (CSC) enrichment in TNBC. The bisulfite sequencing PCR analysis showed that DAC treatment increased DAB2IP expression via inhibition of DNA methylation in both DOC-resistant TNBC cells and tumorspheres. Loss of DAB2IP boosted the enrichment of CSCs through activation of Erk/β-catenin signaling in vitro and facilitated tumor initiation in vivo. In mouse model, TNBC tumors with inhibition of DAB2IP exhibited poor response to DOC and DOC-resistant tumors were resensitized to DOC treatment by low-dose DAC treatment in vivo. Finally, hypermethylation of DAB2IP was correlated with low expression of DAB2IP and poor outcome of TNBC patients treated with DOC-based chemotherapy. Conclusions: Collectively, we discovered that epigenetic silencing of DAB2IP is a driver of CSC enrichment, which results in the evolution of DOC resistance, and a low dose of DAC reverses DOC resistance through epigenetic re-expression of DAB2IP.

Author(s):  
Xiuzhi Zhu ◽  
Li Chen ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Liu Yang ◽  
...  

Abstract Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy.


2020 ◽  
Author(s):  
XIUZHI ZHU ◽  
LI CHEN ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Yang Liu ◽  
...  

Abstract Background: PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of PARPi in TNBC can be improved with CDK4/6 inhibitors (CDK4/6i).Methods: We screened primary PARPi-sensitive and resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired PARPi resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically.Results: We demonstrated for the first time that the combination of PARPi and CDK4/6i has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In the PARPi-sensitive MB436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In the PARPi-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of PARPi and CDK4/6i greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumor growth. Inadequate DNA damage caused by PARPi activated the Wnt signaling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site activated the Wnt signaling pathway and mediated PARPi resistance, which could be strongly inhibited by the combined treatment with CDK4/6i.Conclusions: Our data provide a rationale for the clinical evaluation of the therapeutic synergy of PARPi and CDK4/6i in BRCAmut/TNBCs with high Wnt signaling activation, high MYC expression and do not respond to PARPi monotherapy.


2020 ◽  
Author(s):  
Zhaoting Yang ◽  
Huazi Li ◽  
Chengye Zhang ◽  
Nan Che ◽  
Ying Feng ◽  
...  

Abstract BackgroundGlycolysis plays a pivotal role in breast cancer stem-like cell reprogramming. The SET-domain containing 5 (SETD5) is a previously uncharacterized member of the histone lysine methyltransferase family. Yet, the molecular mechanisms underlying the promotion of stem-like and glycolysis activation traits of SETD5 have not been elucidated.MethodsBasing on public datasets, we explored clinicopathological and survival analysis of SETD5 on breast cancer (BC) patients. Spheroid formation, transfection experiments and measurement of glucose uptake and lactate production analyzed the regulatory function of SETD5 on glycolysis in breast cancer stem-like cells (BCSC). The impact of SETD5 on tumor growth was studied in a murine xenograft model. Immunohistochemistry, immunofluorescence, western blot, preparation of cytoplasmic and nuclear extracts and co-immunoprecipitation were used to determine the molecular mechanisms of SETD5 in cancer cell glycolysis.ResultsOur data displayed that overexpression of SETD5 in BC tissues is positively associated with progression. SETD5 overexpression is associated with poor post-progression survival in BC patients. SETD5 expression was enriched in spheroid cells. Downregulation of SETD5 significantly decreased BCSC properties and glycolysis in vitro and in vivo. Interestingly, SETD5 and glycolytic enzymes were accumulated in the central hypoxic regions of subcutaneous tumor tissues. Our mechanistic study found that SETD5 binding to EP300/hypoxia-inducible factor 1α (HIF1α) and work as an upstream effector. SETD5 knockdown reduced the expression of HIF1α, hexokinase-2, and 6-phosphofructo-2-kinase in the nucleus after treatment with cobalt chloride (CoCl2), a chemical hypoxia mimetic agent, which activates HIF1α to accumulate in the nucleus. ConclusionSETD5 is required for glycolysis in BCSCs through binding to EP300/HIF1α and could be a potential therapeutic target for BC patients.


2020 ◽  
Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Abstract Background: Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are among the most highly conserved epigenetic marks that correlate well with gene silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown.Methods: The methylation status of HAVCR2 and LGALS9 was detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR.Results: Here, we show that SUV39H1 up-regulates H3K9me3 expression in DNMT3A promoter region, which in turn induced expression of DNMT3A. In addition, our mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 in the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 expression at the cellular level,indicating that SUV39H1-H3K9me3-DNMT3A is a crucial regulatory axis in cervical cancer.Conclusion: These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.


2020 ◽  
Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Abstract Background: Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are among the most highly conserved epigenetic marks that correlate well with gene silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown. Methods: The methylation status of HAVCR2 and LGALS9 was detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR. Results: Here, we show that SUV39H1 up-regulates H3K9me3 expression in DNMT3A promoter region, which in turn induced expression of DNMT3A. In addition, our mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro . Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 in the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 expression at the cellular level,indicating that SUV39H1-H3K9me3-DNMT3A is a crucial regulatory axis in cervical cancer. Conclusion: These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


Sign in / Sign up

Export Citation Format

Share Document