scholarly journals TIMP-1 As a Promising Therapeutic Indicator for the Intestinal Inflammation and Fibrosis.

Author(s):  
Keisuke Sato ◽  
Hideyuki Suzuki ◽  
Hideaki Karasawa ◽  
Akihiro Yamamura ◽  
Taiki Kajiwara ◽  
...  

Abstract Background: Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), which can be prevented with anti-inflammatory therapies. However, inflammatory biomarkers do not necessarily reflect the progression of fibrosis, and hence, an indicator that reflects the therapeutic effects of available anti-inflammatory drugs on fibrosis is needed. This study shows that tissue inhibitor of metalloproteinase-1 (TIMP-1) is a potential therapeutic indicator for ongoing intestinal fibrosis in IBD patients.Methods: TIMP-1 mRNA levels in human myofibroblasts were measured, and TIMP-1 expression in the intestine of 10 Crohn’s disease (CD) patients was examined by immunohistochemistry. Colitis was induced in C57BL/6 mice by administration of 1.5% dextran sodium sulfate for 7 days; then, the mice were treated with anti-TNF-α antibody or phosphate-buffered saline for 14 days. Intestinal fibrosis was evaluated by Masson’s trichrome staining, and TIMP-1 mRNA levels in the intestinal tissue and plasma TIMP-1 levels were measured.Results: TIMP-1 expression in human fibroblasts increased after differentiation into myofibroblasts. TIMP-1 expression in CD intestinal tissue was significantly higher in the inflammation area than in the fibrotic or normal areas. In a murine colitis mode in which TIMP-1 mRNA levels were increased, anti-TNF-α antibody administration significantly attenuated inflammation and fibrosis assessed by a reduction in TIMP-1 mRNA levels in intestinal tissue and plasma TIMP-1 levels.Conclusions: The results in this study show that TIMP-1 is a potential new biomarker that could be used to assess the effectivity of different therapeutic strategies for intestinal inflammation and fibrosis in IBD patients.

2020 ◽  
Vol 21 (22) ◽  
pp. 8826
Author(s):  
Elena Guillén-Gómez ◽  
Irene Silva ◽  
Núria Serra ◽  
Francisco Caballero ◽  
Jesús Leal ◽  
...  

Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype, TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.


2003 ◽  
Vol 285 (3) ◽  
pp. G556-G565 ◽  
Author(s):  
C. Linard ◽  
A. Ropenga ◽  
M. C. Vozenin-Brotons ◽  
A. Chapel ◽  
D. Mathe

The small bowel is an important dose-limiting organ in abdominal radiotherapy because irradiation can cause acute enteritis that, in turn, leads to progressively reduced motility and finally, in a later phase, to fibrosis. Because these clinical symptoms may be caused by the early stage of an inflammatory process, we characterized the radiation-induced intestinal inflammation in rats. Abdominal γ-irradiation (10-Gy) induced a cascade of inflammatory events characterized by an early (6 h after exposure) increase in IL-1β, TNF-α, and IL-6 mRNA levels in the rat ileal muscularis layer. IL-8 [a cytokine-induced neutrophil chemoattractant (CINC)] mRNA appeared later (at 3 days). The expression of TGF-β (a profibrotic cytokine) was higher in irradiated than control tissue at day 1, whereas IL-10 (an anti-inflammatory cytokine) expression vanished completely. Despite strong IL-1ra expression, the IL-1ra/IL-1β ratio, which is an indicator of inflammatory balance, was -41% at day 1 in irradiated compared with control tissue. The nuclear transcription factors NF-κB and activator protein-1 (AP-1) govern transcription of these genes, directly or indirectly. Although expression of the subunits of NF-κB (p65, p50) and AP-1 (c- fos, c- jun) did not increase, irradiation caused a rapid and persistent translocation of p65 and p50. An imbalance between proinflammatory and anti-inflammatory mediators may contribute to perpetuating intestinal inflammation, thus making it chronic.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Krithika Selvarajan ◽  
Chandrakala Aluganti Narasimhulu ◽  
Reena Bapputty ◽  
Sampath Parthasarathy

Background Dietary intervention to prevent atherosclerosis and inflammation has been a major focus in recent years. Sesame oil (SO), widely used in many Asian countries, has been reported to help reduce high blood pressure. It has also been shown to reduce plasma cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels. We previously reported that SO was effective in inhibiting atherosclerosis in LDL-receptor negative mice. In this study we tested whether the aqueous, non-lipid components of SO might have anti-inflammatory effects. Methods Sesame oil was extracted using ethanol:water mixture, lyophilized and reconstituted in water. To study anti-inflammatory effect, RAW 264.7 cells (macrophage cell line) were treated with the aqueous extract in the presence or absence of lipopolysaccharide (LPS) for 24 hours. RNA was extracted using Trizol. mRNA expression of inflammatory cytokines such as IL-1α, IL-6 and TNF-α were analyzed by real time PCR. Protein expression was determined by western blot analysis. To identify the mechanism of action, we performed luciferase assay using HepG2-LXR reporter cell lines. Results LPS induced the expression of IL-1α, IL-6 and TNF-α mRNA levels in RAW cells. The extract alone did not significantly affect the expressions of inflammatory cytokine genes. However, when treated together with LPS, sesame oil aqueous extract inhibited the mRNA levels of these cytokines significantly. Treatment with LPS together with SO extract also decreased the protein expression of these cytokines. The SO extract induced LXR expression as identified by the luciferase assay system in HepG2-LXR reporter cells. Conclusion These findings suggest that the aqueous portion of SO might be effective in preventing inflammation. Furthermore, the activation of LXR might suggest additional effects on lipid metabolism. Identifying the specific components present in the aqueous extract will be instrumental in developing treatment modalities for atherosclerosis and other inflammatory conditions.


2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2032
Author(s):  
Vishnu Raj ◽  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Sanjana Chandran ◽  
Shreesh K. Ojha ◽  
...  

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1β, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


2019 ◽  
Vol 216 (2) ◽  
pp. 337-349 ◽  
Author(s):  
Peng Xiao ◽  
Huilun Zhang ◽  
Yu Zhang ◽  
Mingzhu Zheng ◽  
Rongbei Liu ◽  
...  

Inflammatory cytokines produced by activated macrophages largely contribute to the pathological signs of inflammatory bowel disease (IBD). Interleukin-10 (IL-10) is the predominant anti-inflammatory cytokine in the intestine, and its therapeutic efficacy for IBD has been clinically tested. Nevertheless, how the function of IL-10 is regulated in the intestinal microenvironment remains unknown, which largely hinders the further development of IL-10–based therapeutic strategies. Here, we found that the expression of phosphatase Shp2 was increased in colonic macrophages and blood monocytes from IBD patients compared with those from healthy controls. Shp2 deficiency in macrophages protects mice from colitis and colitis-driven colon cancer. Mechanistically, Shp2 disrupts IL-10–STAT3 signaling and its dependent anti-inflammatory response in human and mouse macrophages. Furthermore, a Shp2-inducing role of TNF-α is unveiled in our study. Collectively, our work identifies Shp2 as a detrimental factor for intestinal immune homeostasis and hopefully will be helpful in the future exploitation of IL-10 immunotherapy for IBD.


2007 ◽  
Vol 292 (1) ◽  
pp. L125-L133 ◽  
Author(s):  
J. L. Wright ◽  
H. Tai ◽  
R. Wang ◽  
X. Wang ◽  
A. Churg

Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-α receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-α dependent, further supporting the importance of TNF-α in the pathogenesis of cigarette smoke-induced lung disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Shimei Qi ◽  
Zunyong Feng ◽  
Qiang Li ◽  
Zhilin Qi ◽  
Yao Zhang

Myricitrin, a naturally occurring polyphenol hydroxy flavonoid, has been reported to possess anti-inflammatory properties. However, the precise molecular mechanism of myricitrin’s effects on LPS-induced inflammation is unclear. In the present study, myricitrin significantly alleviated acute lung injury in mice. Myricitrin also markedly suppressed the production of NO, TNF-α, IL-6, and MCP-1 in RAW264.7 macrophage cells. The inhibition of NO was concomitant with a decrease in the protein and mRNA levels of iNOS. The phosphorylation of JAKs and STAT-1 was abrogated by myricitrin. Furthermore, myricitrin inhibited the nuclear transfer and DNA binding activity of STAT1. The JAK-specific inhibitor ruxolitinib simulated the anti-inflammatory effect of myricitrin. However, myricitrin had no impact on the MAPK signalling pathway. Myricitrin attenuated the generation of intracellular ROS by inhibiting the assembly of components of the gp91phoxand p47phox. Suppression of ROS generation using NAC or apocynin or by silencing gp91phoxand p47phoxall demonstrated that decreasing the level of ROS inhibited the LPS-induced inflammatory response. Collectively, these results confirmed that myricitrin exhibited anti-inflammatory activity by blocking the activation of JAKs and the downstream transcription factor STAT1, which may result from the downregulation of NOX2-dependent ROS production mediated by myricitrin.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Guiming Liu ◽  
Jing Xie ◽  
Yurui Shi ◽  
Rongda Chen ◽  
Li Li ◽  
...  

Abstract As a major bioactive compound from the Saposhnikovia divaricata (Turcz.) Schischk, sec-O-glucosylhamaudol (SOG), has been reported to have anti-nociceptive activity and high 5-lipoxygenase (5-LOX) activity. Nevertheless, the mechanism of the potential anti-inflammatory effects of SOG is unclear. The anti-inflammatory impacts of SOG in RAW 264.7 cell lines stimulated by LPS were explored in the present study. It was found that SOG dose-dependently reduced the emergence of inflammation cytokines, such as IL-6 and TNF-α in Raw264.7 murine macrophages stimulated by LPS. Real-time PCR assay demonstrated the SOG dose-dependently inhibited transcription of these cytokines as well. In addition, it was also found that NF-κB activation and MAPKs phosphorylation including p38, JNK and ERK1/2 induced by LPS were suppressed by SOG. Due to its anti-inflammatory activity, our results suggest that SOG might have therapeutic effects on inflammatory disease, such as acute lung injury or rheumatoid arthritis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3602 ◽  
Author(s):  
Jae Lee ◽  
Hyunwoong Lim ◽  
Jae Ahn ◽  
Dongsik Jang ◽  
Seung Lee ◽  
...  

In this study, a novel three-dimensional (3D) bone morphogenic protein-2 (BMP-2)-delivering tannylated polycaprolactone (PCL) (BMP-2/tannic acid (TA)/PCL) scaffold with anti-oxidant, anti-inflammatory, and osteogenic activities was fabricated via simple surface coating with TA, followed by the immobilization of BMP-2 on the TA-coated PCL scaffold. The BMP-2/TA/PCL scaffold showed controlled and sustained BMP-2 release. It effectively scavenged reactive oxygen species (ROS) in cells, and increased the proliferation of MC3T3-E1 cells pre-treated with hydrogen peroxide (H2O2). Additionally, the BMP-2/TA/PCL scaffold significantly suppressed the mRNA levels of pro-inflammatory cytokines, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-induced MC3T3-E1 cells. Furthermore, it showed outstanding enhancement of the osteogenic activity of MC3T3-E1 cells through increased alkaline phosphatase (ALP) activity and calcium deposition. Our findings demonstrated that the BMP-2/TA/PCL scaffold plays an important role in scavenging ROS, suppressing inflammatory response, and enhancing the osteogenic differentiation of cells.


Sign in / Sign up

Export Citation Format

Share Document