scholarly journals Gibberellic Acids Promotes Growth and Exopolysaccharides Production in Tetraselmis Suecica Under Reciprocal Nitrogen Concentration: An Assessment on Antioxidant Properties and Nutrients Removal Efficacy of Immobilized Iron-magnetic Nanoparticles

Author(s):  
Prathipa A ◽  
Manigandan G ◽  
Dinesh Kumar S ◽  
Santhanam Perumal ◽  
Perumal P ◽  
...  

Abstract The present study was aimed to assess the effect of gibberellic acids to enhance the growth, biomass, pigment, and exopolysaccharides production in Tetraselmis suecica under reciprocal nitrogen concentrations. For this study, the seven types of experimental media (N-P, NL-P/2GA3, N0-P/2GA3, NL-P/4GA3, N0-P/4GA3, NL-P/6GA3, N0-P/6GA3) were prepared include the addition of gibberellic acids under various nitrogen concentrations. The experiment was lasted for 15 days and the cell density, biomass, chlorophyll ‘a’, and exopolysaccharides (EPS) concentration of T. suecica were estimated for every three days. Then the EPS was subjected to the analyses of chemical (carbohydrate, protein, sulfate, and uronic acid), and antioxidant activity. In addition nutrient removal efficiency was evaluated by using different concentration of EPS. The highest DPPH (86.7±0.95 %) and hydroxyl radical activity (85.7±2.48 %) were observed in 2.5 and 1.2 mg/mL of EPS concentration. The immobilized magnetic Fe3O4-EPS nanoparticles (5.0 and 10.0 g/L) have efficiently removed the excessive phosphate (89.5±1.65 %) and nitrate (73.5±1.72 %) from the Litopenaeus vannamei cultured wastewater. Thus, applying gibberellic acids combined with limited nitrogen concentration could produce higher EPS that could exhibit excellent antioxidant activity, and nutrient removal efficacy in the form of Fe3O4-EPS magnetic nanoparticles.

2017 ◽  
Vol 40 (2) ◽  
pp. 77-81
Author(s):  
Zena M. Hamad

     Acetaminophen also called paracetamol is commonly used as analgesic and antipyretic agent which in high doses causes liver and kidney damage in man and animals. Nigella sativa oil have antioxidant properties. Thirty adult male rats were used and randomly divided into three equal groups. Group (A) untreated and served as control group; Group (B) rats were orally intubated (by gavages needle) acetaminophen suspension (150mg/kg B.W). Group (C) rats were given orally acetaminophen suspension (150mg/kg) plus 1ml/kg B.W of Nigella sativa oil for 42 days in both treated group. Fasting blood samples were collected at 21 and 42 days of experiment to study the following parameters:  Serum creatinine concentration and blood urea nitrogen concentration. The results revealed a significant increase of acetaminophen group in serum creatinine and blood urea nitrogen concentrations as compression with GA. Animals treated with Nigella sativa oil plus acetaminophen (C) showed a significant decline in serum creatinine and blood urea nitrogen concentrations. In conclusion, the acetaminophen was effective in induction of oxidative stress and change in some biological markers related to kidney disease. Also it seems that Nigella sativa oil exerts protective actions against the damaging effect of acetaminophen


Author(s):  
María Lorena Luna-Guevara ◽  
Teresita González-Sánchez ◽  
Adriana Delgado-Alvarado ◽  
María Elena Ramos-Cassellis ◽  
José Guillermo Pérez-Luna ◽  
...  

Objective: To study the effect of storage temperatures and dehydration conditions (solar and convective drying; SD, CD), on the quality, physicochemical parameters and antioxidant properties of tomato fruits. Methodology: The physicochemical characteristics pH, titratable acidity, soluble solids (°Bx) and color parameters (L*, a* and b*), were evaluated. The lycopene, carotenoids and antioxidant activity percentages retention of tomatoes fruits stored at 7 and 22 ° C for 5 days and subjected to SD (Temperature (T) of 67 °C and luminescence of 685 lum/sqf) and CD (T 70 °C, flow rates 0.5, 1.0 and 1.5 m/s), were analyzed. Results: The fruits reached humidities of 17 and 15% for SD and CD. The parameters pH, °Bx, L*, a*, b* were highest with 22°C and CD (1.5 m/s). The value of the carotenoids was higher in fruits stored at 7 ° C and subjected to CD (1.0 and 1.5 m/s) and SD with values of 83.85, 85.98 and 99.43%, respectively. The CD (0.5 m/s) and SD improved lycopene (94.37 and 95.14%) and the antioxidant activity with values of 73.06 and 97.21%. Implications: The application of solar dehydration depends on luminescence condition; however, it is inexpensive and environmentally friendly alternative. Conclusions: The results derived in a viable alternative for the conservation and commercialization of tomato fruits in rural communities


2011 ◽  
pp. 151-157 ◽  
Author(s):  
Marijana B. Saka ◽  
Julianna F. Gyura ◽  
Aleksandra Mišan ◽  
Zita I. Šereš ◽  
Biljana S. Pajin ◽  
...  

The antioxidant activity of cookies prepared by the addition of sugarbeet dietary fibers was investigated in order to estimate their influence on functional characteristics and shelf-life of cookies. Treated fiber (TF) was obtained from sugarbeet by extraction with sulfurous acid (75 °C at pH = 5.7during 60 min) and treatment with hydrogen peroxide (20 g/LH2O2 at pH = 11 during 24 h). The fiber obtained was dried (80 °C), ground and sieved. TF was investigated in comparison with commercially available Fibrex®. The cookies were prepared by the addition of 0, 7, 9 and 11% of sugarbeet dietary fiber as a substitute for wheat flour in the formulation of cookies. The antioxidant properties of cookies were tested every 7 days using a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity test during 6 weeks of storage at room temperature (23 ± 1 ºC). The obtained results indicated that substitution of wheat flour with Fibrex® in the formulation of cookies upgraded the antioxidant activity, i.e. the functional characteristics of Fibrex®-enriched cookies and could prolong their shelf-life. In contrast, TF did not increase the antioxidant activity of TF-enriched cookies. The better antioxidant activities of Fibrex®-enriched cookies could be attributed to the presence of ferulic acid.


Author(s):  
Hadi Shariati ◽  
Mohammad Hassanpour ◽  
Gholamreza Sharifzadeh ◽  
Asghar Zarban ◽  
Saeed Samarghandian ◽  
...  

Objective: The present study has been carried out to evaluate the diuretic and antioxidant properties of pine herb in an animal model. Materials and Methods: 45 adult male rats were randomly divided into nine groups including: groups I (the negative control), groups II (positive control, furosemide 10 mg/kg), groups III to VIII (treatment groups received 100, 200, 400 mg/kg of the aqueous extracts of bark and fruit) and group IX received the combination of aqueous extract of bark (100 mg/kg) and the fruit (100 mg/kg). The urine output, glomerular filtration rate (GFR), electrolytes, urea, and creatinine levels were evaluated . Furthermore, the phenolic content and antioxidant activity of both extracts were also assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and Folin–Ciocalteu methods. Results: The aqueous extracts of the pine bark and fruit increased the urinary output in a dose-dependent manner. The combination of the two extracts compared to the other extracts alone significantly increased the serum potassium level. This study also showed each extract increase creatinine clearance in a dose-dependent manner (p<0.01 and p<0.05). The increase of GFR in the combination group was not significant. The current data showed a significant increase in the total phenolic content in pine bark extract in compared with the fruit extract. Conclusion: The pine bark and fruit can be useful in the prevention and treatment of kidney stones due to the high antioxidant activity.


2019 ◽  
Vol 15 (4) ◽  
pp. 437-441 ◽  
Author(s):  
Vasiliki Lagouri ◽  
Georgia Dimitreli ◽  
Aikatarini Kouvatsi

Background: Oxidation reactions are known to shorten the shelf life and cause damage to foods rich in fat, such as dairy products. One way to limit oxidation and increase the shelf life of fermented dairy products is to use natural antioxidants. The aim of this study was to examine the effect of adding pomegranate extracts in the antioxidant properties, rheological characteristics and the storage stability of the fermented product of kefir. Methods: The Pomegranate Juice (PGJ) and Peel Extracts (PGPE) (5%, 10% w/v) were added to kefir and the antioxidant properties were evaluated by using the methods of radical scavenging activity (DPPH) and Ferric Reducing Antioxidant Power Activity (FRAP). Spectrophotometric and instrumental methods were used to determine the Total Phenols (TPs), pH values, viscosity and flow behavioral index values of enriched with pomegranate kefir samples. The same properties were tested when kefir samples stored at 4°C for 7, 14, 21 and 28 days. Results: The addition of PGJ and PGPE results in an increase in the antioxidant activity (DPPH, FRAP) and total phenol content (TPs) of kefir samples. Increasing the concentration of the added PGJ and PGPE, results in an increase in the TP content and the DPPH activity of kefir. As far as the storage time is concerned, the results showed an increase in the amount of TP at 7th day and a reduction in the DPPH activity in the 14th day of storage. In contrary to the DPPH method, the increase in storage time has resulted in a reduction in antioxidant activity by the FRAP method. The addition of PGJ and PGPE in kefir results in a decrease in pH values while the pH of kefir samples increased during storage at 4°C for 28 days. The addition of PGJ and PGPE to kefir samples results to a decrease in viscosity and an increase in the flow behavior index. Increasing storage time results in increased flow behavior index of kefir samples. Conclusion: The addition of PGJ and PGPE increased the antioxidant activity and total phenols of the kefir product and preserved its properties during the total storage time of 28 days at 4°C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. S. Prasedya ◽  
A. Frediansyah ◽  
N. W. R. Martyasari ◽  
B. K. Ilhami ◽  
A. S. Abidin ◽  
...  

AbstractSample particle size is an important parameter in the solid–liquid extraction system of natural products for obtaining their bioactive compounds. This study evaluates the effect of sample particle size on the phytochemical composition and antioxidant activity of brown macroalgae Sargassum cristaefolium. The crude ethanol extract was extracted from dried powders of S.cristeafolium with various particle sizes (> 4000 µm, > 250 µm, > 125 µm, > 45 µm, and < 45 µm). The ethanolic extracts of S.cristaefolium were analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), phenolic compound concentration and antioxidant activities. The extract yield and phytochemical composition were more abundant in smaller particle sizes. Furthermore, the TPC (14.19 ± 2.08 mg GAE/g extract to 43.27 ± 2.56 mg GAE/g extract) and TFC (9.6 ± 1.8 mg QE/g extract to 70.27 ± 3.59 mg QE/g extract) values also significantly increased as particle sizes decreased. In addition, phenolic compounds epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and Epigallocatechin gallate (EGCG) concentration were frequently increased in samples of smaller particle sizes based on two-way ANOVA and Tukey’s multiple comparison analysis. These results correlate with the significantly stronger antioxidant activity in samples with smaller particle sizes. The smallest particle size (< 45 µm) demonstrated the strongest antioxidant activity based on DPPH, ABTS, hydroxyl assay and FRAP. In addition, ramp function graph evaluates the desired particle size for maximum phytochemical composition and antioxidant activity is 44 µm. In conclusion, current results show the importance of particle size reduction of macroalgae samples to increase the effectivity of its biological activity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3898
Author(s):  
Surakshi Wimangika Rajapaksha ◽  
Naoto Shimizu

Antioxidant polyphenols in black tea residue are an underused source of bioactive compounds. Microencapsulation can turn them into a valuable functional ingredient for different food applications. This study investigated the potential of using spent black tea extract (SBT) as an active ingredient in food packaging. Free or microencapsulated forms of SBT, using a pectin–sodium caseinate mixture as a wall material, were incorporated in a cassava starch matrix and films developed by casting. The effect of incorporating SBT at different polyphenol contents (0.17% and 0.34%) on the structural, physical, and antioxidant properties of the films, the migration of active compounds into different food simulants and their performance at preventing lipid oxidation were evaluated. The results showed that adding free SBT modified the film structure by forming hydrogen bonds with starch, creating a less elastic film with antioxidant activity (173 and 587 µg(GAE)/g film). Incorporating microencapsulated SBT improved the mechanical properties of active films and preserved their antioxidant activity (276 and 627 µg(GAE)/g film). Encapsulates significantly enhanced the release of antioxidant polyphenols into both aqueous and fatty food simulants. Both types of active film exhibited better barrier properties against UV light and water vapour than the control starch film and delayed lipid oxidation up to 35 d. This study revealed that starch film incorporating microencapsulated SBT can be used as a functional food packaging to protect fatty foods from oxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 327
Author(s):  
Michał J. Sabat ◽  
Anna M. Wiśniewska-Becker ◽  
Michał Markiewicz ◽  
Katarzyna M. Marzec ◽  
Jakub Dybas ◽  
...  

Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid containing taurine conjugated with the ursodeoxycholic acid (UDCA), has been known and used from ancient times as a therapeutic compound in traditional Chinese medicine. TUDCA has recently been gaining significant interest as a neuroprotective agent, also exploited in the visual disorders. Among several mechanisms of TUDCA’s protective action, its antioxidant activity and stabilizing effect on mitochondrial and plasma membranes are considered. In this work we investigated antioxidant activity of TUDCA and its impact on structural properties of model membranes of different composition using electron paramagnetic resonance spectroscopy and the spin labeling technique. Localization of TUDCA molecules in a pure POPC bilayer has been studied using a molecular dynamics simulation (MD). The obtained results indicate that TUDCA is not an efficient singlet oxygen (1O2 (1Δg)) quencher, and the determined rate constant of its interaction with 1O2 (1Δg) is only 1.9 × 105 M−1s−1. However, in lipid oxidation process induced by a Fenton reaction, TUDCA reveals substantial antioxidant activity significantly decreasing the rate of oxygen consumption in the system studied. In addition, TUDCA induces slight, but noticeable changes in the polarity and fluidity of the investigated model membranes. The results of performed MD simulation correspond very well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document