scholarly journals A review on heavy metals biosorption in the environment

2018 ◽  
Vol 5 (10) ◽  
pp. 225-236
Author(s):  
Oluwafemi Adebayo Oyewole ◽  
Binta Buba Adamu ◽  
Emmanuel Olalekan Oladoja ◽  
Adeoluwa Nancy Balogun ◽  
Banke Mary Okunlola ◽  
...  

Heavy metal refers to any metallic chemical element that has a relatively high density and is toxic or poisonous at low concentrations. Examples of heavy metals include mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl) and lead (Pb). Little amounts of some heavy metals are needed by living organisms, however excessive levels of these metals can be harmful to the organisms due to their level of toxicity and accumulation behaviour. Different methods such as electrodeposition, electrocoagulation and nanofiltration system have been used to decontaminate the environment from adverse effect of these pollutants yet most of the methods used are ineffective. Biosorption is the removal of organic and inorganic substances from solution by biological material. Cheap biosorbents for the removal of metals are bacteria, fungi, algae, plants, industrial wastes and agricultural wastes. There are many mechanisms involved in biosorption some of which are not fully understood, examples are precipitation, ion exchange, complexation and adsorption. The efficiency of biosorption depends on many factors such as, temperature, characteristics of the biomass, pH, surface area to volume ratio, metal affinity to the biosorbent, concentration and characteristics of the biomass. Compared to other methods biosorption is operated over a wide range of physiochemical conditions and it uses naturally rich renewable biomaterials that can be cheaply produced. However, the potential for biological process improvement (for example through genetic engineering of cells) is restricted because cells are not metabolizing. Biosorption is in its developmental stages and further improvement in both performance and costs can be expected in future.

2016 ◽  
Vol 8 (1) ◽  
pp. 174-194 ◽  
Author(s):  
Irina Catianis ◽  
Constantin Ungureanu ◽  
Luca Magagnini ◽  
Elisa Ulazzi ◽  
Tiziana Campisi ◽  
...  

AbstractThe aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.


Author(s):  
Joan Mwihaki Nyika

Heavy metal pollution is a growing environmental concern due to the increase in anthropogenic-based sources. Microorganisms have high adsorptive capacities and surface-area-to-volume ratio that enable the uptake of these contaminants and their conversion to innocuous complexes in the process of bioremediation. This chapter explores the mechanisms and specific microorganisms that are resistant to metal toxicity. A wide range of bacterial, algae, and fungal species used as biosorbents are highlighted. Mechanisms such as reduction of metal cations, their sequestration, and binding on cell barriers are discussed. To optimise the efficacy of microorganisms in bioremediation processes, adoption of genetic and nano-technologies is recommended.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 811 ◽  
Author(s):  
El-Sayed E. Mehana ◽  
Asmaa F. Khafaga ◽  
Samar S. Elblehi ◽  
Mohamed E. Abd El-Hack ◽  
Mohammed A.E. Naiel ◽  
...  

As a result of the global industrial revolution, contamination of the ecosystem by heavy metals has given rise to one of the most important ecological and organismic problems, particularly human, early developmental stages of fish and animal life. The bioaccumulation of heavy metals in fish tissues can be influenced by several factors, including metal concentration, exposure time, method of metal ingestion and environmental conditions, such as water temperature. Upon recognizing the danger of contamination from heavy metals and the effects on the ecosystem that support life on earth, new ways of monitoring and controlling this pollution, besides the practical ones, had to be found. Diverse living organisms, such as insects, fish, planktons, livestock and bacteria can be used as bioindicators for monitoring the health of the natural ecosystem of the environment. Parasites have attracted intense interest from parasitic ecologists, because of the variety of different ways in which they respond to human activity contamination as prospective indices of environmental quality. Previous studies showed that fish intestinal helminths might consider potential bioindicators for heavy metal contamination in aquatic creatures. In particular, cestodes and acanthocephalans have an increased capacity to accumulate heavy metals, where, for example, metal concentrations in acanthocephalans were several thousand times higher than in host tissues. On the other hand, parasitic infestation in fish could induce significant damage to the physiologic and biochemical processes inside the fish body. It may encourage serious impairment to the physiologic and general health status of fish. Thus, this review aimed to highlight the role of heavy metal accumulation, fish histopathological signs and parasitic infestation in monitoring the ecosystem pollutions and their relationship with each other.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Alla G. Morozova ◽  
Tatiana M. Lonzinger ◽  
Vadim A. Skotnikov ◽  
Gennady G. Mikhailov ◽  
Yury Kapelyushin ◽  
...  

Although copper is needed for living organisms at low concentrations, it is one of the pollutants that should be monitored along with other heavy metals. A novel and sustainable composite mineralizing sorbent based on MgO-CaO-Al2O3-SiO2-CO2 with nanosized adsorption centers was synthesized using natural calcium–magnesium carbonates and clay aluminosilicates for copper sorption. An organometallic modifier was added as a temporary binder and a source of inovalent ions participating in the reactions of defect formation and activated sintering. The sorbent-mineralizer samples of specified composition and properties showed irreversible sorption of Cu2+ ions by the ion exchange reactions Ca2+ ↔ Cu2+ and Mg2+ ↔ Cu2+. The topochemical reactions of the ion exchange 2OH− → CO32−, 2OH− → SO42− and CO32− → SO42− occurred at the surface with formation of the mixed calcium–copper carbonates and sulfates structurally connected with aluminosilicate matrix. The reverse migration of ions to the environment is blocked by the subsequent mineralization of the newly formed interconnected aluminosilicate and carbonate structures.


2020 ◽  
Vol 17 (4) ◽  
pp. 542-552 ◽  
Author(s):  
Debaprasad Parai ◽  
Pia Dey ◽  
Samir K. Mukherjee

Background:It was apparent by the end of 1980s that the success against the threats of bacterial pathogens on public health was an illusion, with the rapid development of resistant strains more than the discovery of new drugs. As a consequence, the remedial services were in the backfoot position of being on the losing side of this never-ending evolutionary war. The quest for new antibiotics to overcome resistance problems has long been a top research priority for the researchers and the pharmaceutical industry. However, the resistance problems remain unresolved due to the abrupt misuse of antibiotics by common people, which has immensely worsened the scenario by disseminating antibiotic-resistant bacterial strains around the world.Objective:Thus, immediate action is needed to measure emerging and re-emerging microbial diseases having new resistance mechanisms and to manage their rapid spread among the common public by means of novel alternative metabolites.Conclusion:Antimicrobial Peptides (AMPs) are short, cationic peptides evolved in a wide range of living organisms and serve as the essential part of the host innate immunity. For humans, these effector molecules either can directly kill the foreign microbes or modulate the host immune systems so that the human body could develop some resistance against the microbial infections. In this review, we discuss their history, structural classifications, modes of action, and explain their biological roles as anti-infective agents. We also scrutinize their clinical potentiality, current limitations in various developmental stages and strategies to overcome for their successful clinical applications.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 821
Author(s):  
Gerhardus Petrus Nortjé ◽  
Michiel Christiaan Laker

Soil is an essential ecosystem, delivering valuable services such as the provision of food, energy and raw materials, carbon sequestration, water purification and infiltration, nutrient regulation, pest control and recreation. Therefore, soil is crucial for fighting climate change, protecting human health, safeguarding biodiversity and ecosystems and ensuring food security. Pollution of the soil by organic and inorganic substances is, therefore, detrimental to ecosystem services and/or human health. Heavy metals at harmful concentrations are highly detrimental, and here, mining activities are one of the main sources of soil pollution. According to studies conducted, some of the major soil factors affecting mineral (including P) sorption are time, soil pH, soil organic matter and iron and aluminum oxides of soils. This paper looks at sources of mineral element pollution, including heavy metals, as heavy metals are toxic to all living organisms, including humans. This paper also reviews both cationic heavy metals and inorganic anionic pollutants, such as phosphate and arsenic, as well as cationic, non-heavy-metal pollutants such as nitrogen and potassium.


2018 ◽  
Vol 7 (4.2) ◽  
pp. 26 ◽  
Author(s):  
M. Padmaja ◽  
R. Bhavani ◽  
R. Pamila

With the onset of industrialization, a lot of anthropogenic sources of cadmium, including industrial emissions, application of fertilizers and sewage sludge to farm land has lead to the contamination of water bodies, and has increased cadmium uptake by agricultural crops, grown for human consumption. Cadmium when present, even at low concentrations may pose serious health as well as environmental hazards. The use of various materials has been widely investigated as a replacement of recent expensive methods for removing cadmium from water and wastewater. Plant based natural materials, agricultural products, nano materials and industrial wastes are efficiently used as low-cost adsorbents. Until now, most of the researchers have attempted to review the literature for multiple heavy metals. In the current review, an elaborate list of literature has been compiled to provide information on a wide range of natural as well as modified adsorbent materials for the removal of Cadmium from wastewater.


2019 ◽  
Author(s):  
Bo Zhang ◽  
Yuanbing Zhang ◽  
Ji-Long Liu

AbstractProximity-based biotinylation combined with mass spectrometry has emerged as a powerful approach to study protein interaction networks and protein subcellular compartmentation. However, low kinetics and the requirement of toxic chemicals limit the broad utilisation of current proximity labelling methods in living organisms. TurboID, the newly engineered promiscuous ligase, has been reported to label bait proteins effectively in various species. Here, we systematically demonstrated the application of TurboID-mediated biotinylation in a wide range of developmental stages and tissues, and we also verified the feasibility of TurboID-mediated labelling in desired cells via cell-type-specific GAL4 driver in Drosophila. Furthermore, using TurboID-mediated biotinylation coupled with mass spectrometry, we characterized the proximate proteome of the cytoophidium, a newly identified filamentous structure containing the metabolic enzyme CTP synthase (CTPS) in Drosophila. Our study demonstrates a referable tool and resource for research in subcellular compartments of metabolic enzymes in vivo.


2013 ◽  
Vol 8 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Biljana Kaličanin ◽  
Dragan Velimirović

AbstractHeavy metals are highly toxic to living organisms even in low concentrations owing to their cumulative effect. In this study the overall content of lead in herbal drugs was determined, as well as the content of lead which was released from tested drugs during the preparation of tea drinks. To determine the content of toxic lead, the highly sensitive microanalytical technique of the potentiometric stripping analysis (PSA) with oxygen as the oxidant was used. The lowest overall content of lead was detected for chamomile and ranged from 0.73 to 0.77 µg/g, while the greatest content of lead was determined in the samples of the frangula bark, and yielded approximately 3 µg/g. The lead content in the prepared tea drinks ranged from 0.26 to 1.23 µg/g and depended on the manner in which tea drink was prepared. All of the herbal drugs in this study contain a certain amount of the toxic metal lead, but at the same time, the contents were below the levels prescribed for this metal. The content of lead released from the herbal drug into the tea drink was three to five times lower than those of the overall content of this metal.


2021 ◽  
Author(s):  
Bohyeon Jeong ◽  
Young-Kyoung Ryu ◽  
Jeong Yeob Baek ◽  
Jahong Koo ◽  
Subin Park ◽  
...  

Abstract As global plastic production continues to grow, microplastics released from a massive quantity of plastic wastes have become a critical environmental concern. These microplastic particles are found in a wide range of living organisms in a diverse array of ecosystems. In this study, we investigated the biological effects of polystyrene nanoplastics (PSNPs) on development of the central nervous system using cultured neural stem cells (NSCs) and mice exposed to PSNPs during developmental stages. Our study demonstrates that maternal administration of PSNPs during gestation and lactating periods altered the functioning of NSCs, neural cell compositions, and brain histology in progeny. Similarly, our in vitro study also shows PSNP-induced molecular and functional defects in NSCs. Finally, we show that the abnormal brain development caused by exposure to high concentrations of PSNPs results in neurophysiological and cognitive deficits in a gender-specific manner. Our data demonstrate the possibility that exposure to high amounts of PSNPs may increase the risk of neurodevelopmental defects.


Sign in / Sign up

Export Citation Format

Share Document