scholarly journals Adsorption of Cadmium from Aqueous Solutions Using Low cost Materials-A Review

2018 ◽  
Vol 7 (4.2) ◽  
pp. 26 ◽  
Author(s):  
M. Padmaja ◽  
R. Bhavani ◽  
R. Pamila

With the onset of industrialization, a lot of anthropogenic sources of cadmium, including industrial emissions, application of fertilizers and sewage sludge to farm land has lead to the contamination of water bodies, and has increased cadmium uptake by agricultural crops, grown for human consumption. Cadmium when present, even at low concentrations may pose serious health as well as environmental hazards. The use of various materials has been widely investigated as a replacement of recent expensive methods for removing cadmium from water and wastewater. Plant based natural materials, agricultural products, nano materials and industrial wastes are efficiently used as low-cost adsorbents. Until now, most of the researchers have attempted to review the literature for multiple heavy metals. In the current review, an elaborate list of literature has been compiled to provide information on a wide range of natural as well as modified adsorbent materials for the removal of Cadmium from wastewater.

2016 ◽  
Vol 8 (1) ◽  
pp. 174-194 ◽  
Author(s):  
Irina Catianis ◽  
Constantin Ungureanu ◽  
Luca Magagnini ◽  
Elisa Ulazzi ◽  
Tiziana Campisi ◽  
...  

AbstractThe aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.


2020 ◽  
Vol 104 (20) ◽  
pp. 8567-8594 ◽  
Author(s):  
Martina Cappelletti ◽  
Alessandro Presentato ◽  
Elena Piacenza ◽  
Andrea Firrincieli ◽  
Raymond J. Turner ◽  
...  

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. Key points • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 232
Author(s):  
Magdalena R. Raykova ◽  
Damion K. Corrigan ◽  
Morag Holdsworth ◽  
Fiona L. Henriquez ◽  
Andrew C. Ward

Antimicrobial drug residues in food are strictly controlled and monitored by national laws in most territories. Tetracyclines are a major broad-spectrum antibiotic class, active against a wide range of Gram-positive and Gram-negative bacteria, and they are the leading choice for the treatment of many conditions in veterinary medicine in recent years. In dairy farms, milk from cows being treated with antibiotic drugs, such as tetracyclines, is considered unfit for human consumption. Contamination of the farm bulk tank with milk containing these residues presents a threat to confidence of supply and results in financial losses to farmers and dairy. Real-time monitoring of milk production for antimicrobial residues could reduce this risk and help to minimise the release of residues into the environment where they can cause reservoirs of antimicrobial resistance. In this article, we review the existing literature for the detection of tetracyclines in cow’s milk. Firstly, the complex nature of the milk matrix is described, and the test strategies in commercial use are outlined. Following this, emerging biosensors in the low-cost biosensors field are contrasted against each other, focusing upon electrochemical biosensors. Existing commercial tests that identify antimicrobial residues within milk are largely limited to beta-lactam detection, or non-specific detection of microbial inhibition, with tests specific to tetracycline residues less prevalent. Herein, we review a number of emerging electrochemical biosensor detection strategies for tetracyclines, which have the potential to close this gap and address the industry challenges associated with existing tests.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1870
Author(s):  
Amina Aragosa ◽  
Valeria Specchia ◽  
Mariaenrica Frigione

The environmental issues caused by the impacts of synthetic plastics use and derived wastes are arising the attention to bio-based plastics, natural polymers produced from renewable resources, including agricultural, industrial, and domestic wastes. Bio-based plastics represent a potential alternative to petroleum-based materials, due to the insufficient availability of fossil resources in the future and the affordable low cost of renewable ones that might be consumed for the biopolymer synthesis. Among the polyhydroxyalkanoates (PHA), the polyhydroxybutyrate (PHB) biopolymer has been synthesized and characterized with great interest due to its wide range of industrial applications. Currently, a wide number of bacterial species from soil, activated sludge, wastewater, industrial wastes, and compost have been identified as PHB producers. This work has the purpose of isolating and characterizing PHB-producing bacteria from the agricultural soil samples of Argania spinosa in the south region of Morocco where the plant species is endemic and preserved. During this research, four heat-resistant bacterial strains have been isolated. Among them, two species have been identified as endospore forming bacteria following the Schaffer-Fulton staining method with Malachite green and the Methylene blue method. Black intracellular granules have been appreciated in microscopy at 100× for both strains after staining with Sudan black B. The morphological and biochemical analyses of the isolates, including sugar fermentation and antibiotic susceptibility tests, preliminarily identified the strains 1B and 2D1 belonging to the genus Serratia and Proteus, respectively.


2019 ◽  
Vol 10 (2) ◽  
pp. 67-77
Author(s):  
G. I Zubareva

The necessity of measures to prevent environmental pollution by industrial emissions, in particular sewage, is substantiated. It has been shown that one of the most promising methods for cleaning industrial wastewater is flotation. Its essence, characteristics and types of flotation are discussed. The factors that determine the use of different types of flotation for the treatment of industrial wastewater are listed. It is shown that the flotation method can be used to concentrate various in nature pollutants from industrial wastes: suspended solids, petroleum products, fats, heavy metal ions, surfactants. It has been established that pressure flotation, electroflotation and ion flotation are most widely used in the practice of cleaning industrial wastewaters. Their advantages compared with other types of flotation are considered. The reasons constraining the widespread use of flotation methods for the treatment of industrial wastewater are discussed. Examples of effective technological schemes for wastewater treatment of a number of industries (oil refineries, meat industry, hydrometallurgical industry, electroplating industry), including the stage of flotation treatment of wastewater are given. The factors that determine the use of flotation treatment of wastewater in technological schemes at a certain stage of industrial effluent treatment are determined. The conclusion was made about the universality of the flotation method, which allows to effectively remove a wide range of contaminants from industrial wastewater, and also successfully combine with widely known purification methods in technological schemes as a preliminary, basic method of purification or additional treatment of effluent up to regulatory requirements.


2018 ◽  
Vol 5 (10) ◽  
pp. 225-236
Author(s):  
Oluwafemi Adebayo Oyewole ◽  
Binta Buba Adamu ◽  
Emmanuel Olalekan Oladoja ◽  
Adeoluwa Nancy Balogun ◽  
Banke Mary Okunlola ◽  
...  

Heavy metal refers to any metallic chemical element that has a relatively high density and is toxic or poisonous at low concentrations. Examples of heavy metals include mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl) and lead (Pb). Little amounts of some heavy metals are needed by living organisms, however excessive levels of these metals can be harmful to the organisms due to their level of toxicity and accumulation behaviour. Different methods such as electrodeposition, electrocoagulation and nanofiltration system have been used to decontaminate the environment from adverse effect of these pollutants yet most of the methods used are ineffective. Biosorption is the removal of organic and inorganic substances from solution by biological material. Cheap biosorbents for the removal of metals are bacteria, fungi, algae, plants, industrial wastes and agricultural wastes. There are many mechanisms involved in biosorption some of which are not fully understood, examples are precipitation, ion exchange, complexation and adsorption. The efficiency of biosorption depends on many factors such as, temperature, characteristics of the biomass, pH, surface area to volume ratio, metal affinity to the biosorbent, concentration and characteristics of the biomass. Compared to other methods biosorption is operated over a wide range of physiochemical conditions and it uses naturally rich renewable biomaterials that can be cheaply produced. However, the potential for biological process improvement (for example through genetic engineering of cells) is restricted because cells are not metabolizing. Biosorption is in its developmental stages and further improvement in both performance and costs can be expected in future.


2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


2020 ◽  
Vol 16 (4) ◽  
pp. 537-542
Author(s):  
Zhigacheva Irina ◽  
Volodkin Aleksandr ◽  
Rasulov Maksud

Background: One of the main sources of ROS in stress conditions is the mitochondria. Excessive generation of ROS leads to oxidation of thiol groups of proteins, peroxidation of membrane lipids and swelling of the mitochondria. In this regard, there is a need to search for preparationsadaptogens that increase the body's resistance to stress factors. Perhaps, antioxidants can serve as such adaptogens. This work aims at studying the effect of antioxidant; the potassium anphen in a wide range of concentrations on the functional state of 6 day etiolated pea seedlings mitochondria (Pisum sativum L). Methods: The functional state of mitochondria was studied per rates of mitochondria respiration, by the level of lipid peroxidation and study of fatty acid composition of mitochondrial membranes by chromatography technique. Results: Potassium anphen in concentrations of 10-5 - 10-8 M and 10-13-10-16 prevented the activation of LPO in the mitochondrial membranes of pea seedlings, increased the oxidation rates of NAD-dependent substrates and succinate in the respiratory chain of mitochondria that probably pointed to the anti-stress properties of the drug. Indeed, the treatment of pea seeds with the preparation in concentrations of 10-13 M prevented the inhibition of growth of seedlings in conditions of water deficiency. Conclusion: It is assumed that the dose dependence of the biological effects of potassium anphen and the manifestation of these effects in ultra-low concentrations are due to its ability in water solutions to form a hydrate containing molecular ensembles (structures).


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Elena Antinori ◽  
Marco Contardi ◽  
Giulia Suarato ◽  
Andrea Armirotti ◽  
Rosalia Bertorelli ◽  
...  

AbstractMycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.


Sign in / Sign up

Export Citation Format

Share Document