Fifteen years of experience with standardized reference radiometers for controlling low-pressure UV disinfection plants for drinking water

2016 ◽  
Vol 17 (4) ◽  
pp. 975-984
Author(s):  
A. W. Schmalwieser

The only practicable way to control the disinfection capability of a UV disinfection plant for drinking water all the time is to use a UV radiometer. According to the Austrian Standard M5873, this plant radiometer is a standardized part of each plant. The standard defines a so-called reference radiometer (RRM) as well. This is necessary because a plant radiometer has to be controlled periodically. A RRM is a hand-held device which has to fulfil high-quality criteria and must be almost insensitive to environmental conditions. In this paper the principles of the concept behind the RRM are explained together with the requirements of such a device. Further on, the test methods are presented as well as a summary of test results from all RRMs developed during the past 15 years. It is shown that the radiation monitoring concept of the Austrian Standard has been successfully practicable and that the international acceptance of the Austrian Standard is justified.

2016 ◽  
Vol 17 (4) ◽  
pp. 947-957 ◽  
Author(s):  
Alois W. Schmalwieser ◽  
Georg Hirschmann ◽  
Alexander Cabaj ◽  
Regina Sommer

In this paper we present a method to determine the power efficiency of ultraviolet (UV) disinfection plants and apply this to low pressure plants for drinking water. In UV disinfection plants the water flow is regulated to ensure that microorganisms receive the necessary fluence for inactivation while passing through. The flow depends on the UV transmission (UVT) of the water. The lower the UVT of the water is, the less water may flow through the plant. UV irradiance is produced by lamps that consume, together with other components, electrical power and entail running costs. The power efficiency – electrical power versus disinfected volume – of a plant has therefore an important impact. Applying this method to different UV plants that are on the market shows that electric power of at least 5.3 Wh is necessary to disinfect 1 m3 of water possessing a UVT of 80% (100 mm), 8 Wh at 50% and 22 Wh at 10%. Further we found that ineffective design or a wrong selection of a plant may enhance these values by a factor of up to 7. This method enables not only the calculation of the power efficiency but also the decision for a certain plant type.


1974 ◽  
Author(s):  
R. A. Strub

It is known that the compression work of gases can be largely reduced by inter-stage cooling. Multistage radial compressors have been developed in the past with coolers integrated within the casing. Such a solution, however, is limited to medium volume flows of about 40 m3/s. For larger flows, a combination comprising an axial low pressure section with variable guide vanes for flow regulation, used as supercharger, followed by a multistage radial section with integrated coolers, has been developed. The major parameters governing this choice are presented. Aerodynamic tests on the axial and radial sections have been carried out with a special emphasis on the aerodynamic layout of the diffusor connecting the axial or the radial sections to the coolers. The tests have shown that a considerable amount of aerodynamic improvement could be obtained by a proper disposition of asymmetrical guide vanes dividing the total flow going to the coolers placed symmetrically on each side of the casing. Test results on the complete machine, regarding its aerodynamic characteristics and the noise level as well as its mechanical behavior, are given.


Author(s):  
Alois W. Schmalwieser ◽  
Georg Hirschmann ◽  
Jutta Eggers ◽  
Regina Sommer

Abstract The high level of acceptance of ultraviolet (UV) irradiation for water disinfection in the past decade is due to the development of quality standards, especially for drinking water disinfection in Europe (Austrian Standards Institute, German Standards Institute). The central parts of a UV-disinfection device are the UV lamps. Despite their importance, their characterisation and quality assurance is far from being a matter of course and had not been regulated so far. This holds especially with regard to their temperature behaviour. The UV radiation (UVR) emittance of Mercury-Low-Pressure- and Amalgam-Low-Pressure-lamps (LP-lamps) depends on temperature. Each lamp type has its own optimal temperature where UVR emittance is highest. At lower or higher temperatures, UVR emittance is reduced. Additionally LP-lamps do not emit homogeneous along their length and this emission profile can change with temperature. In this paper, we present a standardized method to measure the UVR emittance of LP-lamps along the length in water in dependence of water temperature. This method has been included in the updated Austrian standard ÖNORM M 5873-1 (2020) and in the new release DIN 19294-1 (2020). With this method, the UVR emittance of LP-lamps can be characterized and different types of lamps can be compared.


Author(s):  
Zakirova J.S. ◽  
Nadirbekova R.A. ◽  
Zholdoshev S.T.

The article analyze the long-term morbidity, spread of typhoid fever in the southern regions of the Kyrgyz republic, and remains a permanent epidemic focus in the Jalal-Abad region, where against the low availability of the population to high-quality drinking water, an additional factor on the body for more than two generations and radiation factor, which we confirmed by the spread among the inhabitants of Mailuu-Suu of nosological forms of the syndrome of immunological deficiency, as a predictor of risk groups for infectious diseases, including typhoid fever.


2019 ◽  
pp. 451-458
Author(s):  
Peter W. Rein

Developments in the technology of production of sugar from sugarcane tend to be incremental improvements in an effort to reduce costs and boost revenue. Nonetheless the developments are significant and contribute to sustainable sugarcane enterprises. Some technologies have adapted to changing environmental conditions, and more attention is being given to boosting revenue through associated activities, particularly in enhancing the potential for sugarcane operations to exploit the energy value of sugarcane. This paper outlines recent developments of interest in processing sugarcane.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2327-2329
Author(s):  
J. Lee ◽  
B. Chen ◽  
H. E. Allen ◽  
C. P. Huang ◽  
D. L. Sparks ◽  
...  

A major problem in site remediation is frequently the lack of appropriate standards for pollutants in soil. Lack of standards for an exposure route can result in subjective judgments regarding the extent of remediation needed. These problems are particularly important when considering the potential for groundwater contamination by inorganic materials. The partitioning of trace metals is highly dependent on the nature of the soil and on the solution pH. The maximum level of metal in soil for which the equilibrium soluble metal does not exceed the drinking water standard can be computed, at any pH, from the measured partition coefficient for any metal and soil. The sorption of cadmium and lead onto major types of New Jersey soil has been determined as a function of pH. As the pH decreased, the amount of adsorbed metal decreased. As is conventionally done, we have transformed these data into sorption coefficients (Kd) which are a function of pH. To apply such data in the decision making process, it is necessary to use the Kd and appropriate conditions of soil/groundwater in the environment. The calculation determines the maximum concentration of metal which will not result in exceedence of water quality standards. Thesecriteria can be used as a soil standard which will be protective of groundwater quality. We developed adsorption/desorption relationships in the form of a mathematical model and computed the maximum level of metal in soil for which the equilibrium soluble metal will not exceed the drinking water standards.


1998 ◽  
Vol 37 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Lambert W. C. A. van Breemen ◽  
Henk A. M. Ketelaars ◽  
Wim Hoogenboezem ◽  
Gertjan Medema

Production of drinking water from river water, abstracted either directly from river or from storage reservoirs, requires the application of barriers for pathogenic micro-organisms. About one third of the total production of drinking water in the Netherlands is derived from surface water, mainly the River Meuse and branches of the River Rhine. The results of extensive monitoring programmes show that the microbiological water quality of the River Rhine and River Meuse is strongly influenced by domestic and agricultural waste water discharges, with respect to the River Meuse mainly in the Liège-region in Belgium. Densities of Cryptosporidium and Giardia in both rivers are comparable; the highest density was found in the Belgian Meuse basin. Elimination rates of 1.7- to 3.1 10log-units for pathogenic micro-organisms were found in Dutch storage reservoirs, which can thus be considered as an important first barrier for pathogenic microorganisms. The elimination capacity of reservoirs is influenced by retention time and contamination by waterfowl. To meet the proposed quality criteria for pathogens in drinking water, however, additional barriers are required.


2019 ◽  
Vol 4 (2) ◽  
pp. 176-183
Author(s):  
Ponco Wali

Testing repeat electronic scales with non-automatic scales technical requirements so far is fairly long if not using a calculator or computer. The aim of this research is to compare the repeatability testing method of electronic scales using methods according to the technical requirements of non-automatic scales and the Australian NMI method, both of which refer to OIML R76 in determining the validity or cancellation of electronic scales repeatability testing. This research method is done through repeat testing on 3 samples of electronic scales, then on each electronic scale 2 test methods are performed. The conclusion is that the electronic scales repeatability testing uses the non-automatic scales technical requirements method and the Australian NMI method has some differences although both refer to OIML R76. These differences include several points, namely the charge used, the method of adding additions, the formula for determining electronic scales, and different test results. The Australian NMI method is deemed to make it easier and more time efficient compared to the non-automatic weighing technical requirements method.


Electricity is critical to enabling India’s economic growth and providing a better future for its citizens. In spite of several decades of reform, the Indian electricity sector is unable to provide high-quality and affordable electricity for all, and grapples with the challenge of poor financial and operational performance. To understand why, Mapping Power provides the most comprehensive analysis of the political economy of electricity in India’s states. With chapters on fifteen states by scholars of state politics and electricity, this volume maps the political and economic forces that constrain and shape decisions in electricity distribute on. Contrary to conventional wisdom, it concludes that attempts to depoliticize the sector are misplaced and could worsen outcomes. Instead, it suggests that a historically grounded political economy analysis helps understand the past and devise reforms to simultaneously improve sectoral outcomes and generate political rewards. These arguments have implications for the challenges facing India’s electricity future, including providing electricity to all, implementing government reform schemes, and successfully managing the rise of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document