Monitoring protozoa and metazoa biofilm communities for assessing wastewater quality impact and reactor up-scaling effects

2000 ◽  
Vol 41 (4-5) ◽  
pp. 309-316 ◽  
Author(s):  
J. Fried ◽  
G. Mayr ◽  
H. Berger ◽  
W. Traunspurger ◽  
R. Psenner ◽  
...  

The succession of biofilm communities with special emphasis on ciliates, rotifers, and nematodes was monitored for half a year and compared to different operating conditions in order to evaluate plant performance and effect of up-scaling lab scale to large scale reactors. Ciliates and metazoa are able to rapidly change their communities as a reaction to changed plant operating conditions as has been proven true by comparing lab scale and pilot scale reactors. Even slight operational changes are causing major shifts in biofilm communities. Nematodes and rotifers in lab scale and large scale reactors seem to be in competition with peritrich ciliates. In both lab scale and pilot scale systems ciliates of the subclass Peritrichia proved to be dominant and thus to play an important role in both the species composition of the biofilm biocenosis and biofilm structure. Interpretation of biocenosis composition changes for large scale reactors is much more complex than for lab scale reactors. This conflicts with up-scaling of lab scale results to full scale reactors.

1994 ◽  
Vol 29 (5-6) ◽  
pp. 365-372 ◽  
Author(s):  
Åsa Malmqvist ◽  
Thomas Welander

Biological chlorate removal was studied on a laboratory and a pilot scale with the aim of optimizing process design and operating conditions with respect to process efficiency, stability and economy. The results showed a suspended-carrier biofilm process design to be suitable for biological chlorate removal. In the laboratory tests, at pH 7 and 37°C, a complete removal of chlorate could be maintained at hydraulic retention times (HRTs) as short as 24 min. A longer HRT (1.5 h) was required for complete chlorate removal in the pilot test, due to a lower degree of filling with carrier material (25% versus 50% of the reactor volume), higher process temperature, and leakage of oxygen into the process. However, it is assumed that the loading capacity of a large-scale process would approach that of the laboratory system if the operating conditions were the same. Laboratory tests showed chlorate reduction to be possible within a wide range of pH values and temperatures, although the process stability and loading capacity were strongly affected by changes in these parameters. The results of the laboratory and pilot scale studies, using a suspended-carrier process design, show biological treatment to be an economically viable and efficient process for the removal of chlorate from bleaching plant effluents.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


2019 ◽  
Author(s):  
Ryther Anderson ◽  
Achay Biong ◽  
Diego Gómez-Gualdrón

<div>Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path towards development of machine learning models that can predict the adsorption loading of any new adsorbate at any new operating conditions in any new MOF.</div>


2010 ◽  
Vol 25 (2) ◽  
pp. 185-194
Author(s):  
Anna Svedberg ◽  
Tom Lindström

Abstract A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 15-22
Author(s):  
P. Kouadio ◽  
M. Tétrault

Three colored surface water nanofiltration pilot-scale projects were conducted in the province of Quebec (eastern Canada), between November 2000 and March 2002, by the company H2O Innovation (2000) inc., for the municipalities of Lac Bouchette, Latulipe-et-Gaboury and Charlesbourg (now part of Quebec City). Results indicated that nanofiltration permeate quality has an advance on present drinking water regulation standard in Quebec, but important membrane fouling occurred. Fouling can be controlled by pretreatment and optimization of the operating conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


2021 ◽  
Vol 5 (2) ◽  
pp. 20
Author(s):  
Mateus Paiva ◽  
Admilson Vieira ◽  
Helder T. Gomes ◽  
Paulo Brito

In the evaluation of gasification processes, estimating the composition of the fuel gas for different conditions is fundamental to identify the best operating conditions. In this way, modeling and simulation of gasification provide an analysis of the process performance, allowing for resource and time savings in pilot-scale process operation, as it predicts the behavior and analyzes the effects of different variables on the process. Thus, the focus of this work was the modeling and simulation of biomass gasification processes using the UniSim Design chemical process software, in order to satisfactorily reproduce the operation behavior of a downdraft gasifier. The study was performed for two residual biomasses (forest and agricultural) in order to predict the produced syngas composition. The reactors simulated gasification by minimizing the free energy of Gibbs. The main operating parameters considered were the equivalence ratio (ER), steam to biomass ratio (SBR), and gasification temperature (independent variables). In the simulations, a sensitivity analysis was carried out, where the effects of these parameters on the composition of syngas, flow of syngas, and heating value (dependent variables) were studied, in order to maximize these three variables in the process with the choice of the best parameters of operation. The model is able to predict the performance of the gasifier and it is qualified to analyze the behavior of the independent parameters in the gasification results. With a temperature between 850 and 950 °C, SBR up to 0.2, and ER between 0.3 and 0.5, the best operating conditions are obtained for maximizing the composition of the syngas in CO and H2.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 317-324 ◽  
Author(s):  
J.A. Libra ◽  
A. Schuchardt ◽  
C. Sahlmann ◽  
J. Handschag ◽  
U. Wiesmann ◽  
...  

The aeration systems of two full-scale activated sludge basins were compared over 2.5 years under the same operating conditions using dynamic off-gas testing. Only the material of the diffuser was different, membrane vs. ceramic tube diffusers. The experimental design took the complexity and dynamics of the system into consideration. The investigation has shown that, although the membrane diffusers have higher initial standard oxygen transfer efficiency (SOTE) and standard aeration efficiency (SAE), these decreased over time, while the SAE of the ceramic diffusers started lower, but increased slightly over the whole period. Measurement of air distribution in the basins along with dissolved oxygen concentration profiles have provided important information on improving process control and reducing energy costs. The results show that dynamic off-gas testing can effectively be used for monitoring the aeration system and to check design assumptions under operating conditions. The information can be used to improve the design of new aeration systems or in retro-fitting existing basins.


2011 ◽  
Vol 347-353 ◽  
pp. 372-375 ◽  
Author(s):  
Wei Qiu Huang ◽  
Feng Li ◽  
Shu Hua Zhao ◽  
Jing Zhong

A pilot-scale experimental system of filling gasoline into a tank was built to investigate gasoline vapor-air mass transfer in the tank gas space and the vapor evaporation loss from the tank in different operating conditions. The results showed that the higher the location of filling pipe exit inside the tank, the quicker the speed of the filling gasoline, and the higher the initial vapor concentration in the tank gas space, then the more severe the vapor-air convective transport and the larger the gasoline evaporation loss rates.


Sign in / Sign up

Export Citation Format

Share Document